17 resultados para Estante 15 Número 044
em Universidade dos Açores - Portugal
Resumo:
(...) Existem diferentes tipos de sistemas de identificação com check digit. A escolha do algoritmo a implementar deve satisfazer dois princípios: por um lado, é importante escolher um sistema eficaz que detete o maior número possível de erros; por outro lado, a sua utilização no terreno deve ser de alguma forma acessível, particularmente para quem tem de lidar diariamente com os números produzidos por esse algoritmo. Hoje em dia a utilização de meios eletrónicos revela-se muito eficaz, quer para gerar o algarismo de controlo de novos números, como para validar números que já se encontrem em circulação. Mesmo assim, há uma série de requisitos importantes a ter em conta quando se pretende implementar um novo sistema de identificação. Desde logo, a escolha do alfabeto, ou seja, dos símbolos a utilizar. Normalmente, opta-se por recorrer apenas aos dez algarismos vulgarmente utilizados, do 0 ao 9. É o caso do exemplo que se segue. O método desenvolvido pela IBM, também conhecido por algoritmo de Luhn, aplica-se à generalidade dos cartões de crédito: VISA e VISA Electron (em que o primeiro algarismo da esquerda é um 4), MarterCard (5), American Express (3) e Discover (6), entre outros. Considere-se o número de um cartão VISA: 4188 3600 4538 6426. Como é habitual, o algarismo de controlo é o primeiro algarismo da direita, ou seja, o algarismo das unidades (6). Para verificar se este número é válido, procede-se da seguinte forma (...). Há um algoritmo mais eficaz, desenvolvido por Verhoeff em 1969, que utiliza os mesmos símbolos (os algarismos do 0 a 9). Este sistema deteta 100% dos erros singulares, 100% das transposições de algarismos adjacentes e algumas das transposições intercaladas. Paradoxalmente, é um método pouco utilizado, talvez por necessitar de uma maior bagagem matemática.(...) Na imagem, ilustra-se um exemplo de aplicação deste algoritmo para determinar o algarismo de controlo do número 201034571? (o ponto de interrogação representa o algarismo de controlo, por enquanto, desconhecido). (...) Se nos predispusermos a alargar o alfabeto de símbolos ou a considerar mais de um algarismo de controlo, podemos obter algoritmos ainda mais eficazes na deteção de erros. É o caso dos algoritmos estabelecidos pela norma ISO/IEC 7064. Por exemplo, o algoritmo MOD 11-2 é utilizado para identificar as receitas médicas em Portugal e utiliza um símbolo adicional (o X, que representa o número 10). Já o algoritmo MOD 97-10 requer a utilização de dois algarismos de controlo e é empregue na emissão do Número de Identificação Bancária (NIB). (...)
Resumo:
Dissertação de Mestrado, Biotecnologia em Controlo Biológico, 27 de Junho de 2013, Universidade dos Açores.
Resumo:
(...) Desde logo, salienta-se um aspeto curioso. Estamos na presença de três números primos (significa que são divisíveis apenas por eles próprios e pela unidade) separados uns dos outros por seis unidades: 11+6=17 e 17+6=23. Ou seja, o 6 volta aqui a estar em destaque! (...) Destacam-se algumas ocorrências do número 11 associadas a vários acontecimentos históricos. Em 1998, um avião da Swissair, com 229 pessoas a bordo, despenhou-se no Oceano Atlântico sem sobreviventes. Era um modelo McDonnell Douglas MD-11 com número de voo SWR111. Todos nos recordamos da tragédia decorrente do sismo e tsunami de Sendai, no Japão. Estima-se que este sismo, que assolou a costa japónica a 11 de março de 2011, tenha sido o maior sismo a atingir o Japão e um dos cinco maiores do mundo desde que os registros modernos começaram a ser compilados. (...) O 17 é considerado por muitos povos um número tão azarento como o 13, como acontece, por exemplo, em Itália. Uma das justificações para esta triste fama prende-se com a escrita do 17 em numeração romana, XVII, e com um dos seus anagramas, VIXI, que significa “vivi”. E se “vivi” é porque estou morto! A aversão a este número em Itália é tal que levou a Renault, marca francesa de automóveis, a mudar a designação do seu modelo R17 para R177, para que o pudesse vender em território italiano. Ainda hoje não se encontra facilmente em Itália prédios com andares 17 e hotéis com quartos 17, nem tão pouco assentos de aviões italianos com esse número. Terminamos com algumas curiosidades relativas ao 23, um dos números favoritos em muitas teorias da conspiração: 2/3 é aproximadamente igual a 0,666, sendo 666 o número da Besta; quando foi assassinado, Júlio César terá sido esfaqueado 23 vezes; William Shakespeare nasceu a 23 de abril de 1564 e morreu a 23 de abril de 1616; o famoso Titanic afundou-se na madrugada do dia 15 de abril de 1912 (1+5+4+1+9+1+2=23); a bomba atómica foi lançada sobre Hiroshima pelas 8h15 (8+15=23); (...)
Resumo:
Mestrado (PES II), Educação Pré-Escolar e Ensino do 1º Ciclo do Ensino Básico, 1 de Julho de 2014, Universidade dos Açores.
Resumo:
[...] viagem ao hotel infinito de Hilbert. Sei que na atual crise económica não é prudente qualquer devaneio turístico, mas como o prometido é devido, eis-me a tentar explicar um desafio que ficou em banho-maria desde dezembro e que consistia em resolver o seguinte enigma: se um hotel tiver um número infinito de quartos e cada quarto possuir um número infinito de janelas, será que existem mais quartos do que janelas? [...].
Resumo:
[...]. Historicamente falando, atribui-se a John Napier (Neper) a descoberta deste número no século XVII (que mais tarde passou a ser conhecido pelo seu nome). Mas só cerca de um século depois, com o desenvolvimento do cálculo infi nitesimal, Euler reconheceu a importância deste número. O símbolo e que é usado para designar este número foi escolhido em homenagem a Euler. [...].
Resumo:
Neste artigo apresentam-se algumas curiosidades relativas ao número 666 e associações.
Resumo:
(...) Explora-se neste artigo um exemplo deste tipo de números de identificação com algarismo de controlo: o número de série das notas de Euro. (...) Destacam-se várias novidades nas novas notas de 5 e 10 Euros: a marca de água e a banda holográfica passam a incluir um retrato de Europa, a figura da mitologia grega que dá nome a esta segunda série de notas de Euro; (...) O número de série, que nas notas da primeira série aparecia duas vezes no verso da nota, passa a constar nas novas notas uma só vez (no canto superior direito). Os seus 6 últimos algarismos aparecem também na vertical, sensivelmente a meio das novas notas. Ao todo, o número de série é composto por 12 caracteres: 1 letra e 11 algarismos nas notas antigas e 2 letras e 10 algarismos nas notas novas. (...) A título de exemplo, verifiquemos se é válido o número de série: PA0626068043. Substituindo P por 8 e A por 2, obtemos o número 820626068043. Se adicionarmos todos os seus algarismos, temos s=45, que é um múltiplo de 9. Um método alternativo consiste em adicionar sucessivamente os algarismos, retirando “noves” sempre que possível. No final deve obter-se 0 (significa que o número de série é um múltiplo de 9, ou seja, que o resto da sua divisão por 9 é zero). (...) O leitor pode mesmo tirar proveito desta informação para ganhar algumas notas de Euro. Basta fazer uma aposta com o dono de uma nota, desafiando-o a tapar o último algarismo do número de série. Se conseguir “adivinhar” qual é esse algarismo, a nota será sua! Só tem que recordar os valores que são atribuídos às letras e aplicar um dos dois métodos indicados. (...)
Resumo:
Existem muitos exemplos interessantes de quadrados mágicos com histórias curiosas. Desde logo, se recuarmos no tempo e viajarmos até à antiga China. Segundo reza a lenda, por volta de 2200 a.C., o imperador Yu terá avistado uma tartaruga a sair do Rio Amarelo. Essa tartaruga apresentava um intrigante padrão formado por pontos pretos e brancos, que se assemelhava a uma grelha 3x3, preenchida com os primeiros 9 números naturais (1-9), dispostos de uma forma curiosa. (...) Outro aspeto curioso prende-se com o facto de os astrólogos da Renascença usarem quadrados mágicos associados aos diferentes planetas do Sistema Solar. (...) Outro aspeto que pode ser considerado nestes quadrados mágicos planetários é a soma de todos os números que compõem o quadrado, que se designa por soma mística (esta soma obtém-se multiplicando a constante mágica pelo número total de linhas do quadrado, isto porque ao adicionar os números de qualquer linha, obtém-se sempre a constante mágica). Por exemplo, o quadrado de Saturno tem soma mística igual a 15x3=45; o de Júpiter, 34x4=136; o de Marte, 65x5=325; e o do Sol, 111x6=666. Num quadrado planetário de ordem N, utilizam-se todos os números naturais, do 1 ao NxN, uma e uma só vez. Por este motivo, e tendo em conta as propriedades das progressões aritméticas, a soma mística de um quadrado planetário de ordem N pode ser obtida da fórmula NxN(NxN+1)/2, sendo a constante mágica igual a N(NxN+1)/2. (...)
Resumo:
Os códigos de barras são exemplos de sistemas de identificação com algarismo de controlo, que tem como objetivo verificar se foi cometido pelo menos um erro de escrita, leitura ou transmissão da informação. Nos códigos de barras, o algarismo de controlo é o algarismo das unidades (primeiro algarismo da direita). Os restantes algarismos de um código de barras contêm informação específica. Por exemplo, os três primeiros algarismos da esquerda identificam sempre o país de origem (com a exceção dos códigos de barras dos livros, que apresentam o prefixo 978 ou 979, e dos códigos de uso interno das superfícies comerciais como, por exemplo, para os artigos embalados na padaria ou na peixaria de um supermercado, que começam por 2). Seguem-se alguns exemplos: 300-379 (França e Mónaco); 400-440 (Alemanha); 500-509 (Reino Unido); 520 (Grécia); 539 (Irlanda); 540-549 (Bélgica e Luxemburgo); 560 (Portugal); 690-695 (China); 760-769 (Suíça); 789-790 (Brasil); 840-849 (Espanha e Andorra); 888 (Singapura); 958 (Macau). Observe-se que os países com uma maior produção têm à sua disposição mais de um prefixo de três algarismos. (...) Para se verificar se o número do código de barras está correto, procede-se da seguinte forma (...) obtêm-se, respetivamente, as somas I e P; por fim, calcula-se o valor de S=I+3xP que deverá ser um múltiplo de 10 (ou seja, o seu algarismo das unidades deverá ser 0). (...) E que relação existe entre as barras e os algarismos? Ao olhar com atenção para um código de barras EAN-13, reparamos que os 13 algarismos são distribuídos da seguinte forma: o primeiro algarismo surge isolado à esquerda das barras, enquanto que os restantes surgem por baixo destas, divididos em dois grupos de seis algarismos separados por barras geralmente mais compridas do que as restantes: três barras nas laterais (preto-branco-preto) e cinco barras ao centro (branco-preto-branco-preto-branco). As restantes barras são mais curtas e codificam os 12 algarismos (indiretamente, também codificam o algarismo da esquerda). (...) A representação dos algarismos por barras brancas e pretas respeita alguns princípios como os de paridade e simetria, pelo que um algarismo não é sempre representado da mesma forma. Este aspeto permite que um código de barras possa ser lido por um leitor ótico sem qualquer ambiguidade, quer esteja na posição normal ou "de pernas para o ar". (...) Recentemente surgiu uma nova geração de códigos de barras designados por códigos de resposta rápida ou códigos QR (do inglês Quick Response). Certamente o leitor já os viu em cartazes publicitários ou em revistas. (...)
Resumo:
(...) O leitor que já possua Cartão de Cidadão poderá constatar que o algarismo suplementar do BI continua a marcar presença no novo documento: surge à frente do antigo número do BI, que se passou a designar por Número de Identificação Civil (NIC), imediatamente antes de duas letras. Mas qual é o papel deste algarismo? Na verdade, o algarismo suplementar não é assim tão misterioso. É simplesmente um algarismo de controlo ou dígito de verificação (check digit), que tem como objetivo detetar erros que possam ocorrer na escrita ou leitura do número do BI. Apresente-se como exemplo o número 6235008 0, em que 0 é o algarismo suplementar. (...) Ficam assim desvendados alguns dos mistérios do Cartão de Cidadão. Mas podemos não ficar por aqui: isto porque o Número de Identificação da Segurança Social (NISS), disponível no verso do Cartão de Cidadão, também é um número de identificação com algarismo de controlo! E o curioso é que se utilizam números primos para o cálculo da soma de teste (chama-se primo a todo o número natural superior a um que tenha apenas dois divisores naturais distintos, o número um e ele próprio). Concretamente, utilizam-se os primeiros dez números primos: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29. (...)
Resumo:
(...) Recentemente, em 2004, H. Michael Damm provou na sua tese de doutoramento a existência de quase-grupos totalmente anti-simétricos para ordens diferentes de 2 e 6. A tabela da imagem define um quase-grupo totalmente anti-simétrico de ordem 10, adaptado de um exemplo apresentado por Damm na sua tese. Esta tabela é o que se designa por quadrado latino: em cada linha e em cada coluna, cada um dos símbolos utilizados devem figurar uma e uma só vez. Os quadrados latinos surgiram pelas mãos de um grande matemático, talvez o maior matemático de todos os tempos: Leonhard Euler (1707-1783). Este tipo de tabelas não é totalmente estranho ao leitor. Se olhar com atenção, encontrará apenas duas diferenças em relação aos tradicionais desafios de Sudoku: não existem as chamadas "regiões" e utiliza-se o 0, para além dos algarismos 1-9. A descoberta de Damm impulsionou o desenvolvimento de um novo algoritmo com o seu nome, que tem a vantagem de apenas utilizar os algarismos tradicionais, do 0 ao 9, e de detetar 100% dos erros singulares e 100% das transposições de algarismos adjacentes. Em relação ao algoritmo de Verhoeff, tem uma implementação mais simples e deteta 100% dos erros fonéticos (por exemplo, quando se escreve 15 em vez de 50, devido à pronúncia semelhante destes números em inglês: "fifteen" e "fifty"). Na imagem, ilustra-se um exemplo de aplicação deste algoritmo para determinar o algarismo de controlo do número 201436571? (o ponto de interrogação representa o algarismo de controlo, por enquanto, desconhecido). (...)
Resumo:
Dissertação de Mestrado em Gestão e Conservação da Natureza.
Resumo:
Clifford Alan Pickover nasceu a 15 de agosto de 1957. Este americano é um reconhecido divulgador da Ciência e da Matemática, tendo publicado até ao momento mais de quarenta livros em mais de uma dúzia de línguas. (...) O principal interesse de Pickover está em encontrar novas maneiras de expandir a criatividade, estabelecendo conexões entre áreas aparentemente díspares do esforço humano, como a Arte, a Ciência e a Matemática. (...) Em 1994, Pickover introduziu uma nova classe de números, de certa forma peculiar: os números vampiros. (...) Um número vampiro é um número natural, v, com um número par de algarismos (n), que pode ser escrito como um produto de dois números naturais, x e y, cada um com metade do número de algarismos (n/2) e de forma a que os algarismos utilizados sejam os mesmos (eventualmente escritos por ordem diferente). (...) Na fatorização de um número vampiro, apenas um dos fatores pode ser múltiplo de 10 (ou seja, apenas um dos fatores pode ter o 0 como algarismo das unidades). Assim, 1260 é um número vampiro uma vez que 1260 = 21x60, mas 126 000 já não é um número vampiro apesar de 126 000 = 210x600. Isto porque, no segundo caso, ambos os fatores são múltiplos de 10. (...) Pickover também é adepto de quadrados mágicos. (...)
Resumo:
Martin Gardner (1914-2010) foi um excelente divulgador de Matemática Recreativa. Durante mais de 25 anos escreveu uma coluna intitulada "Jogos Matemáticos" para a Scientific American, revista americana de divulgação científica. Escreveu também com regularidade para a revista Skeptical Inquirer e foi autor de mais de 70 obras. O seu trabalho inspirou centenas de leitores a apreciar e a querer saber mais sobre o vasto mundo da Matemática. Gardner é conhecido por apresentar interessantes enigmas e desafios matemáticos. Neste texto, analisamos três problemas da sua autoria. (...) O segredo para uma rápida resposta a estes problemas reside no conhecimento dos critérios de divisibilidade do 3 e do 9. Aproveitamos, por isso, a oportunidade para rever alguns dos principais critérios de divisibilidade. Como forma de testar a informação que apresentaremos de seguida, o leitor pode socorrer-se de um número com vários algarismos que tenha à mão. Nos exemplos abaixo, utilizaremos o ISBN-13 do livro Grupos de Simetria: Identificação de Padrões no Património Cultural dos Açores, publicado recentemente pela Associação Ludus e pela Apenas Livros, da autoria conjunta de Ricardo Teixeira, Susana Costa e Vera Moniz. O número é o seguinte: 9 789 896 185 039. (...) O leitor pode mesmo aproveitar para aplicar estes critérios de divisibilidade e fazer um brilharete junto de familiares e amigos. Por exemplo, pode virar-se de costas e pedir a um amigo que construa uma sequência de 5 cartas, utilizando cartas numeradas do Ás ao 5, pela ordem que bem entender; sem ver a sequência formada, a sua "intuição de mágico" dar-lhe-à a certeza de que o número é divisível por 3!