92 resultados para Divulgação Obrigatória


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os códigos de barras são exemplos de sistemas de identificação com algarismo de controlo, que tem como objetivo verificar se foi cometido pelo menos um erro de escrita, leitura ou transmissão da informação. Nos códigos de barras, o algarismo de controlo é o algarismo das unidades (primeiro algarismo da direita). Os restantes algarismos de um código de barras contêm informação específica. Por exemplo, os três primeiros algarismos da esquerda identificam sempre o país de origem (com a exceção dos códigos de barras dos livros, que apresentam o prefixo 978 ou 979, e dos códigos de uso interno das superfícies comerciais como, por exemplo, para os artigos embalados na padaria ou na peixaria de um supermercado, que começam por 2). Seguem-se alguns exemplos: 300-379 (França e Mónaco); 400-440 (Alemanha); 500-509 (Reino Unido); 520 (Grécia); 539 (Irlanda); 540-549 (Bélgica e Luxemburgo); 560 (Portugal); 690-695 (China); 760-769 (Suíça); 789-790 (Brasil); 840-849 (Espanha e Andorra); 888 (Singapura); 958 (Macau). Observe-se que os países com uma maior produção têm à sua disposição mais de um prefixo de três algarismos. (...) Para se verificar se o número do código de barras está correto, procede-se da seguinte forma (...) obtêm-se, respetivamente, as somas I e P; por fim, calcula-se o valor de S=I+3xP que deverá ser um múltiplo de 10 (ou seja, o seu algarismo das unidades deverá ser 0). (...) E que relação existe entre as barras e os algarismos? Ao olhar com atenção para um código de barras EAN-13, reparamos que os 13 algarismos são distribuídos da seguinte forma: o primeiro algarismo surge isolado à esquerda das barras, enquanto que os restantes surgem por baixo destas, divididos em dois grupos de seis algarismos separados por barras geralmente mais compridas do que as restantes: três barras nas laterais (preto-branco-preto) e cinco barras ao centro (branco-preto-branco-preto-branco). As restantes barras são mais curtas e codificam os 12 algarismos (indiretamente, também codificam o algarismo da esquerda). (...) A representação dos algarismos por barras brancas e pretas respeita alguns princípios como os de paridade e simetria, pelo que um algarismo não é sempre representado da mesma forma. Este aspeto permite que um código de barras possa ser lido por um leitor ótico sem qualquer ambiguidade, quer esteja na posição normal ou "de pernas para o ar". (...) Recentemente surgiu uma nova geração de códigos de barras designados por códigos de resposta rápida ou códigos QR (do inglês Quick Response). Certamente o leitor já os viu em cartazes publicitários ou em revistas. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O Arquipélago dos Açores é rico em formas diversificadas e criativas de artesanato. Em artigos publicados no Tribuna das Ilhas ao longo dos últimos anos, analisámos as simetrias das rendas tradicionais do Faial e do Pico e de peças feitas noutros suportes como, por exemplo, as obtidas do recorte de papel ou do recorte de madeira. Neste contexto, seria uma falha não explorar as simetrias dos bordados tradicionais dos Açores. (...) Na Portaria n.º 89/98, de 3 de dezembro, foram contemplados os bordados tradicionais do Faial, da Terceira e de S. Miguel, sendo que cada um apresenta características muito próprias. No Faial, destacam-se os bordados de palha de trigo sobre tule. (...) Sentámo-nos à conversa com a Dona Isaura Rodrigues, artesã de reconhecido mérito na arte de bordar palha de trigo sobre tule. Começámos por falar nas diferentes fases de execução de uma peça. Em primeiro lugar, deve-se escolher o desenho que tem de se adaptar à estrutura do tule. Em seguida, passa-se o desenho para papel vegetal, que é anexado a uma folha de papel de ferro para ficar mais fácil de trabalhar. Por fim, coloca-se o tule sobreposto ao papel vegetal, que deve ser alinhado e mantido fixo (...) A matéria-prima necessária exige também algum cuidado. Por exemplo, a palha de trigo deve ser cortada com uma rachadeira artesanal, que está preparada para dividir a palha em 5 ou 6 hastes (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(...) O leitor que já possua Cartão de Cidadão poderá constatar que o algarismo suplementar do BI continua a marcar presença no novo documento: surge à frente do antigo número do BI, que se passou a designar por Número de Identificação Civil (NIC), imediatamente antes de duas letras. Mas qual é o papel deste algarismo? Na verdade, o algarismo suplementar não é assim tão misterioso. É simplesmente um algarismo de controlo ou dígito de verificação (check digit), que tem como objetivo detetar erros que possam ocorrer na escrita ou leitura do número do BI. Apresente-se como exemplo o número 6235008 0, em que 0 é o algarismo suplementar. (...) Ficam assim desvendados alguns dos mistérios do Cartão de Cidadão. Mas podemos não ficar por aqui: isto porque o Número de Identificação da Segurança Social (NISS), disponível no verso do Cartão de Cidadão, também é um número de identificação com algarismo de controlo! E o curioso é que se utilizam números primos para o cálculo da soma de teste (chama-se primo a todo o número natural superior a um que tenha apenas dois divisores naturais distintos, o número um e ele próprio). Concretamente, utilizam-se os primeiros dez números primos: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Continuamos à conversa com a Dona Isaura Rodrigues. (...) Analisamos, de seguida, as simetrias de alguns bordados de palha de trigo sobre tule desenvolvidos pela Dona Isaura Rodrigues, que agradecemos pela disponibilidade e simpatia. Começamos pela echarpe das imagens 1 e 2. Identificamos uma simetria de rotação de 180 graus, também conhecida por meia-volta. Isto significa que, se virarmos a echarpe “de pernas ao ar”, a sua configuração não se altera. Este tipo de simetria é muito comum, não só em peças de artesanato, como também nas calçadas e varandas. (...) Por não apresentar simetrias de reflexão, a echarpe das imagens 1 e 2 tem grupo de simetria C2. (...) O espaçamento entre cópias consecutivas dos motivos é sempre o mesmo. Este tipo de propriedade é comum aos frisos que encontramos nas varandas e nos passeios em calçada, que se caracterizam pela presença de simetrias de translação numa única direção. E esta é uma das ferramentas matemáticas mais importantes, constituindo, muitas vezes, um verdadeiro desafio: a capacidade de encontrar propriedades comuns em coisas que, à primeira vista, não têm qualquer ligação. Não fosse a Matemática a Ciência dos Padrões!

Relevância:

10.00% 10.00%

Publicador:

Resumo:

XII Congresso da Sociedade Portuguesa de Ciências da Educação: Espaços de investigação, reflexão e ação interdisciplinar. Vila Real de 11 de Setembro a 13 de Setembro de 2014.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

XII Congresso da Sociedade Portuguesa de Ciências da Educação: Espaços de investigação, reflexão e ação interdisciplinar. Vila Real de 11 de Setembro a 13 de Setembro de 2014.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(...) Existem diferentes tipos de sistemas de identificação com check digit. A escolha do algoritmo a implementar deve satisfazer dois princípios: por um lado, é importante escolher um sistema eficaz que detete o maior número possível de erros; por outro lado, a sua utilização no terreno deve ser de alguma forma acessível, particularmente para quem tem de lidar diariamente com os números produzidos por esse algoritmo. Hoje em dia a utilização de meios eletrónicos revela-se muito eficaz, quer para gerar o algarismo de controlo de novos números, como para validar números que já se encontrem em circulação. Mesmo assim, há uma série de requisitos importantes a ter em conta quando se pretende implementar um novo sistema de identificação. Desde logo, a escolha do alfabeto, ou seja, dos símbolos a utilizar. Normalmente, opta-se por recorrer apenas aos dez algarismos vulgarmente utilizados, do 0 ao 9. É o caso do exemplo que se segue. O método desenvolvido pela IBM, também conhecido por algoritmo de Luhn, aplica-se à generalidade dos cartões de crédito: VISA e VISA Electron (em que o primeiro algarismo da esquerda é um 4), MarterCard (5), American Express (3) e Discover (6), entre outros. Considere-se o número de um cartão VISA: 4188 3600 4538 6426. Como é habitual, o algarismo de controlo é o primeiro algarismo da direita, ou seja, o algarismo das unidades (6). Para verificar se este número é válido, procede-se da seguinte forma (...). Há um algoritmo mais eficaz, desenvolvido por Verhoeff em 1969, que utiliza os mesmos símbolos (os algarismos do 0 a 9). Este sistema deteta 100% dos erros singulares, 100% das transposições de algarismos adjacentes e algumas das transposições intercaladas. Paradoxalmente, é um método pouco utilizado, talvez por necessitar de uma maior bagagem matemática.(...) Na imagem, ilustra-se um exemplo de aplicação deste algoritmo para determinar o algarismo de controlo do número 201034571? (o ponto de interrogação representa o algarismo de controlo, por enquanto, desconhecido). (...) Se nos predispusermos a alargar o alfabeto de símbolos ou a considerar mais de um algarismo de controlo, podemos obter algoritmos ainda mais eficazes na deteção de erros. É o caso dos algoritmos estabelecidos pela norma ISO/IEC 7064. Por exemplo, o algoritmo MOD 11-2 é utilizado para identificar as receitas médicas em Portugal e utiliza um símbolo adicional (o X, que representa o número 10). Já o algoritmo MOD 97-10 requer a utilização de dois algarismos de controlo e é empregue na emissão do Número de Identificação Bancária (NIB). (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(...) Recentemente, em 2004, H. Michael Damm provou na sua tese de doutoramento a existência de quase-grupos totalmente anti-simétricos para ordens diferentes de 2 e 6. A tabela da imagem define um quase-grupo totalmente anti-simétrico de ordem 10, adaptado de um exemplo apresentado por Damm na sua tese. Esta tabela é o que se designa por quadrado latino: em cada linha e em cada coluna, cada um dos símbolos utilizados devem figurar uma e uma só vez. Os quadrados latinos surgiram pelas mãos de um grande matemático, talvez o maior matemático de todos os tempos: Leonhard Euler (1707-1783). Este tipo de tabelas não é totalmente estranho ao leitor. Se olhar com atenção, encontrará apenas duas diferenças em relação aos tradicionais desafios de Sudoku: não existem as chamadas "regiões" e utiliza-se o 0, para além dos algarismos 1-9. A descoberta de Damm impulsionou o desenvolvimento de um novo algoritmo com o seu nome, que tem a vantagem de apenas utilizar os algarismos tradicionais, do 0 ao 9, e de detetar 100% dos erros singulares e 100% das transposições de algarismos adjacentes. Em relação ao algoritmo de Verhoeff, tem uma implementação mais simples e deteta 100% dos erros fonéticos (por exemplo, quando se escreve 15 em vez de 50, devido à pronúncia semelhante destes números em inglês: "fifteen" e "fifty"). Na imagem, ilustra-se um exemplo de aplicação deste algoritmo para determinar o algarismo de controlo do número 201436571? (o ponto de interrogação representa o algarismo de controlo, por enquanto, desconhecido). (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Benjamin Franklin (1706-1790) foi jornalista, cientista, inventor, homem de estado e diplomata. (...) Benjamin Franklin era um entusiasta de quadrados mágicos. Chegou mesmo a criar os seus próprios quadrados. O mais conhecido é o quadrado 8 por 8 apresentado na imagem. Numa carta publicada em 1769, Franklin refere: "Na minha juventude, divertia-me a construir quadrados mágicos, de modo a que a soma dos números de cada linha, de cada coluna e de cada uma das duas diagonais principais fosse sempre a mesma; com o passar do tempo, conseguia criar quadrados mágicos, de tamanho razoável, tão depressa quanto conseguia escrever os números nas suas linhas e colunas; mas, por não estar totalmente satisfeito com estes quadrados, que eram demasiado fáceis, impus a mim mesmo o desafio de construir outro tipo de quadrados mágicos, que apresentassem propriedades mais ricas e que constituíssem, assim, um maior estímulo à curiosidade." Em relação ao quadrado mágico da imagem, são utilizados todos os números naturais, do 1 ao 8x8=64, uma e uma só vez. Além disso, a soma dos números de cada linha e de cada coluna é sempre igual a 260, a constante mágica. Existem muitas outras formas de obter o valor 260 (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado em Gestão e Conservação da Natureza.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clifford Alan Pickover nasceu a 15 de agosto de 1957. Este americano é um reconhecido divulgador da Ciência e da Matemática, tendo publicado até ao momento mais de quarenta livros em mais de uma dúzia de línguas. (...) O principal interesse de Pickover está em encontrar novas maneiras de expandir a criatividade, estabelecendo conexões entre áreas aparentemente díspares do esforço humano, como a Arte, a Ciência e a Matemática. (...) Em 1994, Pickover introduziu uma nova classe de números, de certa forma peculiar: os números vampiros. (...) Um número vampiro é um número natural, v, com um número par de algarismos (n), que pode ser escrito como um produto de dois números naturais, x e y, cada um com metade do número de algarismos (n/2) e de forma a que os algarismos utilizados sejam os mesmos (eventualmente escritos por ordem diferente). (...) Na fatorização de um número vampiro, apenas um dos fatores pode ser múltiplo de 10 (ou seja, apenas um dos fatores pode ter o 0 como algarismo das unidades). Assim, 1260 é um número vampiro uma vez que 1260 = 21x60, mas 126 000 já não é um número vampiro apesar de 126 000 = 210x600. Isto porque, no segundo caso, ambos os fatores são múltiplos de 10. (...) Pickover também é adepto de quadrados mágicos. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Martin Gardner (1914-2010) foi um excelente divulgador de Matemática Recreativa. Durante mais de 25 anos escreveu uma coluna intitulada "Jogos Matemáticos" para a Scientific American, revista americana de divulgação científica. Escreveu também com regularidade para a revista Skeptical Inquirer e foi autor de mais de 70 obras. O seu trabalho inspirou centenas de leitores a apreciar e a querer saber mais sobre o vasto mundo da Matemática. Gardner é conhecido por apresentar interessantes enigmas e desafios matemáticos. Neste texto, analisamos três problemas da sua autoria. (...) O segredo para uma rápida resposta a estes problemas reside no conhecimento dos critérios de divisibilidade do 3 e do 9. Aproveitamos, por isso, a oportunidade para rever alguns dos principais critérios de divisibilidade. Como forma de testar a informação que apresentaremos de seguida, o leitor pode socorrer-se de um número com vários algarismos que tenha à mão. Nos exemplos abaixo, utilizaremos o ISBN-13 do livro Grupos de Simetria: Identificação de Padrões no Património Cultural dos Açores, publicado recentemente pela Associação Ludus e pela Apenas Livros, da autoria conjunta de Ricardo Teixeira, Susana Costa e Vera Moniz. O número é o seguinte: 9 789 896 185 039. (...) O leitor pode mesmo aproveitar para aplicar estes critérios de divisibilidade e fazer um brilharete junto de familiares e amigos. Por exemplo, pode virar-se de costas e pedir a um amigo que construa uma sequência de 5 cartas, utilizando cartas numeradas do Ás ao 5, pela ordem que bem entender; sem ver a sequência formada, a sua "intuição de mágico" dar-lhe-à a certeza de que o número é divisível por 3!

Relevância:

10.00% 10.00%

Publicador:

Resumo:

No artigo publicado no Tribuna das Ilhas no passado dia 15 de maio, exploraram-se alguns dos critérios de divisibilidade mais conhecidos. De fora ficaram os critérios de divisibilidade por 7 e por 11, por apresentarem características próprias que justificam um novo artigo dedicado a esses critérios. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado em Gestão de Empresas/MBA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

No passado dia 16 de junho pelas 18 horas, no Centro Municipal de Cultura de Ponta Delgada, decorreu a sessão de lançamento do livro Grupos de Simetria: Identificação de Padrões no Património Cultural dos Açores, uma publicação conjunta da Associação Ludus e da Editora Apenas Livros, da autoria de Ricardo Cunha Teixeira, Susana Goulart Costa e Vera Raposo Moniz. [...] No mesmo dia do lançamento do livro, foi apresentado o Roteiro de Varandas da Cidade de Ponta Delgada, dos mesmos autores, que conta com o apoio da Câmara Municipal de Ponta Delgada. Este roteiro pode ser adquirido de forma gratuita no hall da Câmara Municipal de Ponta Delgada ou no Centro Municipal de Cultura desse concelho. [...] De seguida, apresenta-se em traços gerais um exemplo de cada um dos 6 tipos de frisos detetados nas varandas de Ponta Delgada e que estão contemplados no roteiro. [...] Nas varandas de Ponta Delgada, apenas está em falta um tipo de friso, que se caracteriza pela existência de um eixo de simetria horizontal, sem simetrias de meia-volta (algo do género: ... >>>>>>>...). No dia do lançamento do Roteiro de Varandas em Ponta Delgada, os autores convidaram, em tom de brincadeira, algum morador desse concelho a alterar uma das suas varandas de forma a que Ponta Delgada possa alcançar o estatuto de "Cidade dos 7 frisos nas suas varandas". Certo é que, desde então, já surgiram moradores interessados!