57 resultados para Teixeira, Anísio
Resumo:
Um dos fenómenos mais curiosos do ano de 2005, que não deve ter passado despercebido ao leitor, foi o aparecimento do Sudoku. Os jornais começaram a incluir este quebra-cabeças ao lado dos horóscopos e das habituais palavras cruzadas. (...) Mas terá o Sudoku alguma Matemática? À primeira vista, o leitor pode pensar que a resposta é afirmativa, tendo em conta que, num desafio de Sudoku, utilizam-se os primeiros nove números naturais, do 1 ao 9. E se tem números é porque tem Matemática! A verdade é que nem tudo o que tem números é Matemática. Além disso, a dinâmica e interesse do Sudoku não está propriamente na utilização de números. Os números estão no Sudoku apenas porque são 9 símbolos que estamos muito habituados a reconhecer e a distinguir e não porque cumprem qualquer função matemática na resolução deste quebra-cabeças. As estratégias utilizadas na resolução de um problema de Sudoku assentam essencialmente na lógica e na eliminação de possibilidades. Podemos mesmo substituir cada um dos números, do 1 ao 9, por quaisquer outros símbolos, por exemplo por nove letras do alfabeto, obtendo exatamente o mesmo tipo de problema na sua essência. (...) A estrutura deste quebra-cabeças baseia-se num quadrado, com n linhas e n colunas, que deve ser preenchido com n símbolos diferentes em que cada símbolo aparece uma e uma só vez em cada linha e cada coluna. Este tipo de estrutura tem um nome em Matemática. Chama-se quadrado latino e é estudo em diversas áreas da Matemática, como na Álgebra. (...)
Resumo:
Retomamos a nossa viagem à descoberta de padrões pelas calçadas da Ilha de S. Miguel. A próxima paragem é no Miradouro da Ponta do Escalvado, localizado no lugar da Várzea, freguesia dos Ginetes, concelho de Ponta Delgada. [...] Mas qual o particular interesse da calçada do Miradouro da Ponta do Escalvado? Mostramos, em seguida, que este é um exemplo de um passeio onde podemos encontrar, em simultâneo, os quatro tipos possíveis de simetria... o que nem sempre acontece. [...] Existem também outros tipos de simetria, aparentemente menos percetíveis. Na imagem 3, ilustra-se o conceito de simetria de rotação. Para tal, temos que fixar um ponto: o centro de rotação. Basicamente, a ideia é a de rodar a figura em torno do ponto fixo segundo um ângulo com uma determinada amplitude. Respeita-se, em geral, o sentido contrário aos ponteiros do relógio, designado por sentido anti-horário ou sentido positivo. Se, ao rodarmos a figura segundo uma amplitude inferior a 360º, ela coincidir com a sua posição inicial, dizemos que tem uma simetria de rotação: a figura inicial e a que resultou desse movimento ficam completamente sobrepostas, não se conseguem distinguir. Dizemos que o movimento em causa fixou globalmente a figura ou que a deixou invariante. [...].
Resumo:
No artigo "The bad and the beautiful", publicado no Finantial Times em janeiro de 2013, Edwin Heathcote realça alguns aspetos que tornam as cidades mais sedutoras e elege as oito mais belas atrações citadinas a nível mundial. O autor coloca o impacto causado pelos padrões ondulantes da calçada do Rossio (calçada do "Mar Largo"), em Lisboa, a par com outros "momentos belos" desencadeados, por exemplo, ao olhar para o grande canal de Veneza, para os apartamentos vitorianos de Nova Iorque ou para a iluminação noturna produzida pelos mercados de rua de Mongkok, em Hong Kong. Sem dúvida que vale a pena dedicar um pouco do nosso tempo a apreciar a bonita calçada portuguesa, uma verdadeira atração mundial. [...] Mas como podemos identificar simetrias no dia a dia? Neste artigo, abordaremos dois dos tipos mais comuns de simetria: a simetria de rotação e a simetria de espelho ou de reflexão. Com o intuito de exemplificar estes tipos de simetria, analisam-se duas rosáceas em calçada, localizadas no Campo de S. Francisco em Ponta Delgada [...].
Resumo:
[...] Há quem seja mais habilidoso e faça questão de oferecer prendas embrulhadas a preceito e há quem seja mais prático e despachado. De uma maneira ou de outra, poupar nos materiais utilizados (nomeadamente, no papel de embrulho e na fita adesiva) parece ser uma boa ideia nos dias que correm. Neste artigo, mostramos como podemos embrulhar um presente de Natal de modo a poupar no papel de embrulho e na fita adesiva e, simultaneamente, a produzir uma bonita embalagem. E tudo isto com a ajuda da Matemática! [...]
Resumo:
O texto que se apresenta constitui um resumo documentado de algumas ideias-chave sobre o tratamento do tema Propriedades e Critérios na educação pré-escolar. O artigo, além de poder ser lido por investigadores ligados a esta área, foi escrito de forma a constituir um documento de apoio para os profissionais que estão "no terreno" (educadores, auxiliares, entre outros) e uma fonte de consulta para pais, encarregados de educação e todos aqueles que se interessam por crianças (no fundo, praticamente todos nós). Os assuntos tratados, além de incidirem sobre ideias basilares como a oralidade infantil, a identificação de propriedades e o estabelecimento de critérios, estendem-se à análise de tarefas didáticas típicas como agrupamentos, associações, correspondências, identificação do intruso, observa e fala, etc. O texto é fundamentado em diversos estudos científicos e inclui o contributo, igualmente importante, de inúmeros educadores que partilharam o seu olhar e a sua experiência. Sendo assim, além da abordagem teórica, são apresentados bastantes exemplos práticos e alguma multimédia.
Resumo:
Este trabalho constitui um resumo documentado de algumas ideias-chave sobre os números, normalmente tratadas no pré-escolar. O texto, além de poder ser lido por investigadores ligados a esta área, foi escrito de forma a constituir um documento de apoio com interesse para os profissionais que estão "no terreno" (educadores, auxiliares, entre outros) e uma fonte de consulta para pais, encarregados de educação e todos aqueles que se interessam por crianças (no fundo, quase todos nós). Os assuntos tratados, basicamente relativos à primeira dezena e subdivididos nas temáticas "Cardinalidade", "Numerais" e "Ordinalidade", são fundamentados com estudos e opiniões de matemáticos, psicólogos e neurocientistas. Além disso, teve-se em conta o contributo, igualmente importante, de inúmeros educadores que partilharam o seu olhar e a sua experiência. Sendo assim, além da abordagem teórica, são apresentados bastantes exemplos práticos e alguma multimédia.
Resumo:
Dissertação de Mestrado em Ciências Económicas e Empresariais.
Resumo:
(...) Um exemplo curioso prende-se com a forma como são partidas as fatias de um bolo e como são distribuídas pelos convidados numa festa. (...) Desde logo, para evitar que alguém se possa queixar do resultado da partilha, o melhor método designa-se por "um parte, outro escolhe" (...) Mas, se o problema se colocar a mais de dois convidados? A solução já não é assim tão simples. O desenvolvimento deste tipo de algoritmos acaba por ter aplicações em muitas outras áreas, desde a simples partilha de uma herança às negociações de desarmamento ou ao estabelecimento de fronteiras entre países. (...) Vejamos, agora, um método muito interessante para manter um bolo sempre fresco. Note-se que a forma tradicional de cortar um bolo é propícia a que, com o passar do tempo, este fique seco junto da zona de corte. O método inovador foi inventado por Francis Galton (1822-1911), matemático e estatístico inglês, primo de Charles Darwin. O seu texto "Cutting a Round Cake on Scientific Principles", publicado na edição de 20 de dezembro de 1906 da conceituada revista Nature, foi divulgado recentemente por Alex Bellos (...) As fatias devem ser cortadas de um lado ao outro do bolo (...) Se olharmos de cima, o bolo utilizado tem o formato de um círculo. Cada fatia cortada é limitada por duas retas paralelas e deve conter o centro do círculo. A ideia é cortar uma fatia e, de seguida, juntar as duas partes que sobraram, unindo-as, se necessário, com um elástico, de modo a sobrepor as zonas do corte (...) Da próxima vez que nos queiramos deliciar novamente com o bolo, devemos fazer novo corte com as mesmas características do anterior, mas agora com direção perpendicular (...)
Resumo:
Voltamos ao tema dos quadrados mágicos. (...) Vejamos alguns exemplos curiosos. Começamos pelo Quadrado Mágico do Aniversariante (figura A). Se o leitor fizer as contas, verificará que a soma dos números de cada linha, de cada coluna e de cada uma das duas diagonais do quadrado é sempre 22 (figura B). Este é, portanto, um quadrado mágico ideal para quem tem 22 anos. Contudo, a sua utilização é muito mais flexível do que à primeira vista se possa pensar. Isto porque também é possível utilizar este quadrado mágico para felicitar qualquer amigo com mais de 22 anos. Se quisermos que o quadrado da figura A tenha constante mágica igual a x, com x>22, basta adicionar a cada um dos números das quatro casas brancas o valor x-22. (...) Na figura D, apresenta-se um Quadrado Mágico Reversível. Este quadrado aparece no livro "Self-working Number Magic", de Karl Fulves, publicado em 1983. Para começar, uma observação atenta a cada linha, coluna ou diagonal do quadrado permite concluir que, em cada uma dessas filas, são utilizados os mesmos algarismos: 1, 6, 8 e 9. Um olhar ainda mais atento permite detetar duas ocorrências de cada um desses algarismos por fila. (...)
Resumo:
Dissertação de Mestrado em Ambiente, Saúde e Segurança.
Resumo:
(...) Explora-se neste artigo um exemplo deste tipo de números de identificação com algarismo de controlo: o número de série das notas de Euro. (...) Destacam-se várias novidades nas novas notas de 5 e 10 Euros: a marca de água e a banda holográfica passam a incluir um retrato de Europa, a figura da mitologia grega que dá nome a esta segunda série de notas de Euro; (...) O número de série, que nas notas da primeira série aparecia duas vezes no verso da nota, passa a constar nas novas notas uma só vez (no canto superior direito). Os seus 6 últimos algarismos aparecem também na vertical, sensivelmente a meio das novas notas. Ao todo, o número de série é composto por 12 caracteres: 1 letra e 11 algarismos nas notas antigas e 2 letras e 10 algarismos nas notas novas. (...) A título de exemplo, verifiquemos se é válido o número de série: PA0626068043. Substituindo P por 8 e A por 2, obtemos o número 820626068043. Se adicionarmos todos os seus algarismos, temos s=45, que é um múltiplo de 9. Um método alternativo consiste em adicionar sucessivamente os algarismos, retirando “noves” sempre que possível. No final deve obter-se 0 (significa que o número de série é um múltiplo de 9, ou seja, que o resto da sua divisão por 9 é zero). (...) O leitor pode mesmo tirar proveito desta informação para ganhar algumas notas de Euro. Basta fazer uma aposta com o dono de uma nota, desafiando-o a tapar o último algarismo do número de série. Se conseguir “adivinhar” qual é esse algarismo, a nota será sua! Só tem que recordar os valores que são atribuídos às letras e aplicar um dos dois métodos indicados. (...)
Resumo:
Existem muitos exemplos interessantes de quadrados mágicos com histórias curiosas. Desde logo, se recuarmos no tempo e viajarmos até à antiga China. Segundo reza a lenda, por volta de 2200 a.C., o imperador Yu terá avistado uma tartaruga a sair do Rio Amarelo. Essa tartaruga apresentava um intrigante padrão formado por pontos pretos e brancos, que se assemelhava a uma grelha 3x3, preenchida com os primeiros 9 números naturais (1-9), dispostos de uma forma curiosa. (...) Outro aspeto curioso prende-se com o facto de os astrólogos da Renascença usarem quadrados mágicos associados aos diferentes planetas do Sistema Solar. (...) Outro aspeto que pode ser considerado nestes quadrados mágicos planetários é a soma de todos os números que compõem o quadrado, que se designa por soma mística (esta soma obtém-se multiplicando a constante mágica pelo número total de linhas do quadrado, isto porque ao adicionar os números de qualquer linha, obtém-se sempre a constante mágica). Por exemplo, o quadrado de Saturno tem soma mística igual a 15x3=45; o de Júpiter, 34x4=136; o de Marte, 65x5=325; e o do Sol, 111x6=666. Num quadrado planetário de ordem N, utilizam-se todos os números naturais, do 1 ao NxN, uma e uma só vez. Por este motivo, e tendo em conta as propriedades das progressões aritméticas, a soma mística de um quadrado planetário de ordem N pode ser obtida da fórmula NxN(NxN+1)/2, sendo a constante mágica igual a N(NxN+1)/2. (...)
Resumo:
Os códigos de barras são exemplos de sistemas de identificação com algarismo de controlo, que tem como objetivo verificar se foi cometido pelo menos um erro de escrita, leitura ou transmissão da informação. Nos códigos de barras, o algarismo de controlo é o algarismo das unidades (primeiro algarismo da direita). Os restantes algarismos de um código de barras contêm informação específica. Por exemplo, os três primeiros algarismos da esquerda identificam sempre o país de origem (com a exceção dos códigos de barras dos livros, que apresentam o prefixo 978 ou 979, e dos códigos de uso interno das superfícies comerciais como, por exemplo, para os artigos embalados na padaria ou na peixaria de um supermercado, que começam por 2). Seguem-se alguns exemplos: 300-379 (França e Mónaco); 400-440 (Alemanha); 500-509 (Reino Unido); 520 (Grécia); 539 (Irlanda); 540-549 (Bélgica e Luxemburgo); 560 (Portugal); 690-695 (China); 760-769 (Suíça); 789-790 (Brasil); 840-849 (Espanha e Andorra); 888 (Singapura); 958 (Macau). Observe-se que os países com uma maior produção têm à sua disposição mais de um prefixo de três algarismos. (...) Para se verificar se o número do código de barras está correto, procede-se da seguinte forma (...) obtêm-se, respetivamente, as somas I e P; por fim, calcula-se o valor de S=I+3xP que deverá ser um múltiplo de 10 (ou seja, o seu algarismo das unidades deverá ser 0). (...) E que relação existe entre as barras e os algarismos? Ao olhar com atenção para um código de barras EAN-13, reparamos que os 13 algarismos são distribuídos da seguinte forma: o primeiro algarismo surge isolado à esquerda das barras, enquanto que os restantes surgem por baixo destas, divididos em dois grupos de seis algarismos separados por barras geralmente mais compridas do que as restantes: três barras nas laterais (preto-branco-preto) e cinco barras ao centro (branco-preto-branco-preto-branco). As restantes barras são mais curtas e codificam os 12 algarismos (indiretamente, também codificam o algarismo da esquerda). (...) A representação dos algarismos por barras brancas e pretas respeita alguns princípios como os de paridade e simetria, pelo que um algarismo não é sempre representado da mesma forma. Este aspeto permite que um código de barras possa ser lido por um leitor ótico sem qualquer ambiguidade, quer esteja na posição normal ou "de pernas para o ar". (...) Recentemente surgiu uma nova geração de códigos de barras designados por códigos de resposta rápida ou códigos QR (do inglês Quick Response). Certamente o leitor já os viu em cartazes publicitários ou em revistas. (...)
Resumo:
O Arquipélago dos Açores é rico em formas diversificadas e criativas de artesanato. Em artigos publicados no Tribuna das Ilhas ao longo dos últimos anos, analisámos as simetrias das rendas tradicionais do Faial e do Pico e de peças feitas noutros suportes como, por exemplo, as obtidas do recorte de papel ou do recorte de madeira. Neste contexto, seria uma falha não explorar as simetrias dos bordados tradicionais dos Açores. (...) Na Portaria n.º 89/98, de 3 de dezembro, foram contemplados os bordados tradicionais do Faial, da Terceira e de S. Miguel, sendo que cada um apresenta características muito próprias. No Faial, destacam-se os bordados de palha de trigo sobre tule. (...) Sentámo-nos à conversa com a Dona Isaura Rodrigues, artesã de reconhecido mérito na arte de bordar palha de trigo sobre tule. Começámos por falar nas diferentes fases de execução de uma peça. Em primeiro lugar, deve-se escolher o desenho que tem de se adaptar à estrutura do tule. Em seguida, passa-se o desenho para papel vegetal, que é anexado a uma folha de papel de ferro para ficar mais fácil de trabalhar. Por fim, coloca-se o tule sobreposto ao papel vegetal, que deve ser alinhado e mantido fixo (...) A matéria-prima necessária exige também algum cuidado. Por exemplo, a palha de trigo deve ser cortada com uma rachadeira artesanal, que está preparada para dividir a palha em 5 ou 6 hastes (...)
Resumo:
Mestrado (PES II), Educação Pré-Escolar e Ensino do 1º Ciclo do Ensino Básico, 13 de Fevereiro de 2015, Universidade dos Açores.