6 resultados para Biomarcador do cancro
em Instituto Nacional de Saúde de Portugal
Resumo:
Tese de doutoramento em Farmácia (Toxicologia), apresentada à Faculdade de Farmácia da Universidade de Lisboa, 2009.
Resumo:
As micotoxinas são metabolitos secundários produzidos por várias espécies de fungos, e que podem contaminar os alimentos nas diferentes fases de produção, colheita, armazenagem ou processamento. Além de constituir um problema económico e de segurança alimentar, a contaminação de alimentos com micotoxinas é essencialmente um problema de saúde pública, dado que estes compostos podem provocar efeitos graves na saúde humana e animal, estando classificadas pela Agência Internacional de Investigação em Cancro (IARC) como carcinogénicos dos grupos 1, 2B e 3. O projecto Mycomix PTDC/DTP/FTO/0417-2012 (2013-2015), que consistiu num estudo exploratório dos efeitos tóxicos de misturas de micotoxinas em alimentos para crianças revelou a presença de múltiplas micotoxinas em simultâneo em alimentos à base de cereais, indicando que as crianças poderão estar expostas a micotoxinas através da alimentação. No âmbito do projecto Mycomix foi avaliada a exposição de crianças a micotoxinas através da aplicação de diários alimentares para determinação do consumo alimentar. Como alternativa às metodologias de avaliação de risco baseadas no consumo alimentar, a Agência Europeia de Segurança Alimentar (EFSA) recomendou a implementação de metodologias harmonizadas de biomonitorização humana, que é uma metodologia que permite avaliar a exposição do Homem a substâncias naturais e sintéticas do meio ambiente, baseando-se na análise direta de biomarcadores em tecidos e fluidos. É por isso o único método para avaliar diretamente a exposição a determinada substância, a sua magnitude, e a sua variação ao longo do tempo.
Resumo:
A recently acknowledged morphological pathway to colorectal cancer originates from precursor polyps with a serrated appearance due to branching and folding of the colon epithelium. This serrated origin accounts for up to 30% of all colorectal tumors but these are heterogeneous regarding molecular characteristics and patient outcome. Here we review the current knowledge about the classification of this tumor subtype and its association with five key features: mutation status of the BRAF or KRAS genes, the CpG island methylation phenotype, microsatellite instability, immune cell infiltration, and overexpression of GTPase RAC1b. Subsequently, available therapeutic approaches for targeting these molecular characteristics are presented and critically discussed.
Resumo:
Styrene is a building-block of several compounds used in a wide array of materials and products. The most important human exposure to this substance occurs in industrial settings, especially among reinforced-plastics industry workers. The effect of occupational exposure to styrene on cytogenetics biomarkers has been previously reviewed with positive association observed for chromosomal aberrations, and inconclusive data for the micronucleus assay. Some limitations were noted in those studies, including inadequate exposure assessment and poor epidemiological design. Furthermore, in earlier studies micronuclei frequency was measured with protocols not as reliable as cytokinesis-block micronucleus (CBMN) assay. Aim of the present systematic review and meta-analysis is to investigate genomic instability and DNA damage as measured by the CBMN assay in lymphocytes of subjects exposed to styrene. A total of 11 studies published between 2004 and 2012 were included in the meta-analysis encompassing 479 styrene-exposed workers and 510 controls. The quality of each study was estimated by a quality scoring system which ranked studies according to the consideration of major confounders, exposure characterization, and technical parameters. An overall increase of micronuclei frequencies was found in styrene-exposure workers when compared to referents (meta-MR 1.34; 95% CI 1.18–1.52), with significant increases achieved in six individual studies. The consistency of results in individual studies, the independence of this result from major confounding factors and from the quality of the study strengthens the reliability of risk estimates and supports the use of the CBMN assay in monitoring genetic risk in styrene workers.
Resumo:
Background: persons who are 65 years or older often spend an important part of their lives indoors thus adverse indoor climate might influence their health status. Objective: to evaluate the influence of indoor air quality and contaminants on older people’s respiratory health. Design: cross-sectional study. Setting: 21 long-term care residences (LTC) in the city of Porto, Portugal. Subjects: older people living in LTC with ≥65 years old. Methods: the Portuguese version of BOLD questionnaire was administered by an interviewer to older residents able to participate (n = 143). Indoor air contaminants (IAC) were measured twice, during winter and summer in 135 areas. Mixed effects logistic regression models were used to study the association between the health questionnaire results and the monitored IAC, adjusted for age, smoking habits, gender and number of years living in the LTC. Results: cough (23%) and sputum (12%) were the major respiratory symptoms, and allergic rhinitis (18%) the main selfreported illness. Overall particulate matter up to 2.5 micrometres in size median concentration was above the reference levels both in winter and summer seasons. Peak values of particulate matter up to 10 micrometres in size (PM10), total volatile organic compounds, carbon dioxide, bacteria and fungi exceeded the reference levels. Older people exposed to PM10 above the reference levels demonstrated higher odds of allergic rhinitis (OR = 2.9, 95% CI: 1.1–7.2). Conclusion: high levels of PM10 were associated with 3-fold odds of allergic rhinitis. No association was found between indoor air chemical and biological contaminants and respiratory symptoms.
Resumo:
Cellular models are important tools in various research areas related to colorectal biology and associated diseases. Herein, we review the most widely used cell lines and the different techniques to grow them, either as cell monolayer, polarized two-dimensional epithelia on membrane filters, or as three-dimensional spheres in scaffoldfree or matrix-supported culture conditions. Moreover, recent developments, such as gut-on-chip devices or the ex vivo growth of biopsy-derived organoids, are also discussed. We provide an overview on the potential applications but also on the limitations for each of these techniques, while evaluating their contribution to provide more reliable cellular models for research, diagnostic testing, or pharmacological validation related to colon physiology and pathophysiology.