2 resultados para Conjunto de dados
em Universidade de Madeira
Resumo:
This thesis presents a cloud-based software platform for sharing publicly available scientific datasets. The proposed platform leverages the potential of NoSQL databases and asynchronous IO technologies, such as Node.JS, in order to achieve high performances and flexible solutions. This solution will serve two main groups of users. The dataset providers, which are the researchers responsible for sharing and maintaining datasets, and the dataset users, that are those who desire to access the public data. To the former are given tools to easily publish and maintain large volumes of data, whereas the later are given tools to enable the preview and creation of subsets of the original data through the introduction of filter and aggregation operations. The choice of NoSQL over more traditional RDDMS emerged from and extended benchmark between relational databases (MySQL) and NoSQL (MongoDB) that is also presented in this thesis. The obtained results come to confirm the theoretical guarantees that NoSQL databases are more suitable for the kind of data that our system users will be handling, i. e., non-homogeneous data structures that can grow really fast. It is envisioned that a platform like this can lead the way to a new era of scientific data sharing where researchers are able to easily share and access all kinds of datasets, and even in more advanced scenarios be presented with recommended datasets and already existing research results on top of those recommendations.
Resumo:
A elevada incidência e mortalidade mundiais associadas ao cancro justificam o desenvolvimento e implementação de estratégias eficazes e não-invasivas conducentes a um diagnóstico precoce. Neste contexto, pretendeu-se avaliar a performance de uma metodologia inovadora, a microextração por “needle trap” (NTME), na extração de metabolitos voláteis (VOMs) da urina de pacientes oncológicos com diferentes tipos de cancro - cólon, pulmão e mama, e de indivíduos saudáveis, com a finalidade de identificar um conjunto de VOMs potenciais biomarcadores dos diferentes tipos cancros em estudo. De modo a maximizar a eficiência da extração dos VOMs, foram otimizados diferentes parâmetros experimentais, nomeadamente a natureza do sorvente, a temperatura, o tempo de equilíbrio, o volume de headspace, a força iónica, o pH do meio e o volume e a agitação da amostra. Usando como sorvente o DVB/Car1000/CarX, os melhores resultados foram obtidos com 4 mL de urina acidificada (pH= 2), 20% NaCl, 40 mL de headspace e 40 min de equilíbrio a 50 °C. Foi ainda avaliada a estabilidade dos VOMs no sorvente até 72 h após a extração. Nos quatro grupos em estudo foram identificados, por GC-MS, 259 VOMs pertencentes a diversas famílias químicas, nomeadamente cetonas, compostos sulfurados, furânicos e terpénicos. A matriz de dados obtida para cada grupo em estudo foi submetida a análise discriminante, usando o método dos mínimos quadrados parciais (PLS-DA), que resultou em clusters distintos diferenciadores de cada grupo. A aplicabilidade do modelo foi avaliada através do método de classificação SIMCA (modelagem suave e independente de analogias de classe), com elevadas taxas de classificação, sensibilidade e especificidade. Este foi o primeiro estudo usando NTME para o estabelecimento do padrão volatómico da urina. Os resultados obtidos revelam-se muito promissores originando perfis voláteis de maior expressividade, mais completos e abrangentes, que os obtidos usando metodologias de referência.