967 resultados para forcing
Resumo:
An analysis of geomorphic system`s response to change in human and natural drivers in some areas within the Rio de la Plata basin is presented The aim is to determine whether an acceleration of geomorphic processes has taken place in recent years and, if so, to what extent it is due to natural (climate) or human (land-use) drivers Study areas of different size, socio-economic and geomorphic conditions have been selected: the Rio de la Plata estuary and three sub-basins within its watershed Sediment cores were extracted and dated ((210)Pb) to determine sedimentation rates since the end of the 19th century. Rates were compared with time series on rainfall as well as human drivers such as population, GDP, livestock load, crop area, energy consumption or cement consumption, all of them related to human capacity to disturb land surface Data on river discharge were also gathered Results obtained indicate that sedimentation rates during the last century have remained essentially constant in a remote Andean basin, whereas they show important increases in the other two, particularly one located by the Sao Paulo metropolitan area Rates in the estuary are somewhere in between It appears that there is an intensification of denudation/sedimentation processes within the basin. Rainfall remained stable or varied very slightly during the period analysed and does not seem to explain increases of sedimentation rates observed. Human drivers, particularly those more directly related to capacity to disturb land surface (GDP, energy or cement consumption) show variations that suggest human forcing is a more likely explanation for the observed change in geomorphic processes It appears that a marked increase in denudation, of a ""technological"" nature, is taking place in this basin and leading to an acceleration of sediment supply This is coherent with similar increases observed in other regions (C) 2010 Elsevier B V All rights reserved
Resumo:
Activity rhythms in animal groups arise both from external changes in the environment, as well as from internal group dynamics. These cycles are reminiscent of physical and chemical systems with quasiperiodic and even chaotic behavior resulting from “autocatalytic” mechanisms. We use nonlinear differential equations to model how the coupling between the self-excitatory interactions of individuals and external forcing can produce four different types of activity rhythms: quasiperiodic, chaotic, phase locked, and displaying over or under shooting. At the transition between quasiperiodic and chaotic regimes, activity cycles are asymmetrical, with rapid activity increases and slower decreases and a phase shift between external forcing and activity. We find similar activity patterns in ant colonies in response to varying temperature during the day. Thus foraging ants operate in a region of quasiperiodicity close to a cascade of transitions leading to chaos. The model suggests that a wide range of temporal structures and irregularities seen in the activity of animal and human groups might be accounted for by the coupling between collectively generated internal clocks and external forcings.
Resumo:
With an example taken from a late-Hauterivian series of the Lusitanian Basin (Portugal), we will demonstrate the sedimentary record of orbital pattern variations and, consequently, climate variations in an inner platform environment with patterns and isolation changes, allows us to establish 4 major orders of periodicity related to orbital components:- The large cycles ob bed thickness variation, constituted by 31-32 beds, recording the 400 ky eccentricity cycle component;- The medium cycles, represented by byndles of 8-9 beds, related to the 100 ky eccentricity cycle component; - The small cycles, of 3-5 beds, recording the 41 ky obliquity components;- The very small cycles, of 2 beds, related to the 22 ky and 26 ky precession components. The mean duration of each bed is around 11.8 ky, a number very close to that of the precession hemi-cycle. Climatic control on qualitative production is confirmed by the close relation between the bed thickness variations, the insolation variability and the variation of micritized elements concentrations.
Resumo:
We study, both theoretically and experimentally, the dynamical response of Turing patterns to a spatiotemporal forcing in the form of a traveling-wave modulation of a control parameter. We show that from strictly spatial resonance, it is possible to induce new, generic dynamical behaviors, including temporally modulated traveling waves and localized traveling solitonlike solutions. The latter make contact with the soliton solutions of Coullet [Phys. Rev. Lett. 56, 724 (1986)] and generalize them. The stability diagram for the different propagating modes in the Lengyel-Epstein model is determined numerically. Direct observations of the predicted solutions in experiments carried out with light modulations in the photosensitive chlorine dioxide-iodine-malonic acid reaction are also reported.
Resumo:
We study the response of Turing stripe patterns to a simple spatiotemporal forcing. This forcing has the form of a traveling wave and is spatially resonant with the characteristic Turing wavelength. Experiments conducted with the photosensitive chlorine dioxide-iodine-malonic acid reaction reveal a striking symmetry-breaking phenomenon of the intrinsic striped patterns giving rise to hexagonal lattices for intermediate values of the forcing velocity. The phenomenon is understood in the framework of the corresponding amplitude equations, which unveils a complex scenario of dynamical behaviors.
Resumo:
We study dynamics of domain walls in pattern forming systems that are externally forced by a moving space-periodic modulation close to 2:1 spatial resonance. The motion of the forcing induces nongradient dynamics, while the wave number mismatch breaks explicitly the chiral symmetry of the domain walls. The combination of both effects yields an imperfect nonequilibrium Ising-Bloch bifurcation, where all kinks (including the Ising-like one) drift. Kink velocities and interactions are studied within the generic amplitude equation. For nonzero mismatch, a transition to traveling bound kink-antikink pairs and chaotic wave trains occurs.
Resumo:
We report on an experimental study of long normal Saffman-Taylor fingers subject to periodic forcing. The sides of the finger develop a low amplitude, long wavelength instability. We discuss the finger response in stationary and nonstationary situations, as well as the dynamics towards the stationary states. The response frequency of the instability increases with forcing frequency at low forcing frequencies, while, remarkably, it becomes independent of forcing frequency at large forcing frequencies. This implies a process of wavelength selection. These observations are in good agreement with previous numerical results reported in [Ledesma-Aguilar et al., Phys. Rev. E 71, 016312 (2005)]. We also study the average value of the finger width, and its fluctuations, as a function of forcing frequency. The average finger width is always smaller than the width of the steady-state finger. Fluctuations have a nonmonotonic behavior with a maximum at a particular frequency.
Resumo:
This paper presents the predicted flow dynamics from the application of a Reynolds-averaged NavierStokes model to a series of bifurcation geometries with morphologies measured during previous flume experiments. The topography of the bifurcations consists of either plane or bedform-dominated beds which may or may not possess discordance between the two bifurcation distributaries. Numerical predictions are compared with experimental results to assess the ability of the numerical model to reproduce the division of flow into the bifurcation distributaries. The hydrodynamic model predicts: (1) diverting fluxes in the upstream channel which direct water into the distributaries; (2) super-elevation of the free surface induced at the bifurcation edge by pressure differences; and (3) counter-rotating secondary circulation cells which develop upstream of the apex of the bifurcation and move into the downstream channels, with water converging at the surface and diverging at the bed. When bedforms are not present, weak transversal fluxes characterize the upstream channel for almost its entire length, associated with clearly distinguishable secondary circulation cells, although these may be under-estimated by the turbulence model used in the solution. In the bedform dominated case, the same hydrodynamic conditions were not observed, with the bifurcation influence restricted and depth scale secondary circulation cells not forming. The results also demonstrate the dominant effect bed discordance has upon flow division between the two distributaries. Finally, results indicate that in bedform dominated rivers. Consequently, we suggest that sand-bed river bifurcations are more likely to have an influence that extends much further upstream and have a greater impact upon water distribution. This may contribute to observed morphological differences between sand-bedded and gravel-bedded braided river networks. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
The Late Triassic and Jurassic platform and the oceanic complexes in Evvoia, Greece, share a complementary plate-tectonic evolution. Shallow marine carbonate deposition responded to changing rates of subsidence and uplift, whilst the adjacent ocean underwent spreading, and then convergence, collision and finally obduction over the platform complex. Late Triassic ocean spreading correlated with platform subsidence and the formation of a long-persisting peritidal passive-margin platform. Incipient drowning occurred from the Sinemurian to the late Middle Jurassic. This subsidence correlated with intra-oceanic subduction and plate convergence that led to supra-subduction calc-alkaline magmatism and the formation of a primitive volcanic arc. During the Middle Jurassic, plate collision caused arc uplift above the carbonate compensation depth (CCD) in the oceanic realm, and related thrust-faulting, on the platform, led to sub-aerial exposures. Patch-reefs developed there during the Late Oxfordian to Kimmeridgian. Advanced oceanic nappe-loading caused platform drowning below the CCD during the Tithonian, which is documented by intercalations of reefal turbidites with non-carbonate radiolarites. Radiolarites and bypass-turbidites, consisting of siliciclastic greywacke, terminate the platform succession beneath the emplaced oceanic nappe during late Tithonian to Valanginian time.
Resumo:
By simulations of the Barkley model, action of uniform periodic nonresonant forcing on scroll rings and wave turbulence in three-dimensional excitable media is investigated. Sufficiently strong rapid forcing converts expanding scroll rings into the collapsing ones and suppresses the Winfree turbulence caused by the negative tension of wave filaments. Slow strong forcing has an opposite effect, leading to expansion of scroll rings and induction of the turbulence. These effects are explained in the framework of the phenomenological kinematic theory of scroll waves.
Resumo:
We study, both theoretically and experimentally, the dynamical response of Turing patterns to a spatiotemporal forcing in the form of a traveling-wave modulation of a control parameter. We show that from strictly spatial resonance, it is possible to induce new, generic dynamical behaviors, including temporally modulated traveling waves and localized traveling solitonlike solutions. The latter make contact with the soliton solutions of Coullet [Phys. Rev. Lett. 56, 724 (1986)] and generalize them. The stability diagram for the different propagating modes in the Lengyel-Epstein model is determined numerically. Direct observations of the predicted solutions in experiments carried out with light modulations in the photosensitive chlorine dioxide-iodine-malonic acid reaction are also reported.
Resumo:
We study the response of Turing stripe patterns to a simple spatiotemporal forcing. This forcing has the form of a traveling wave and is spatially resonant with the characteristic Turing wavelength. Experiments conducted with the photosensitive chlorine dioxide-iodine-malonic acid reaction reveal a striking symmetry-breaking phenomenon of the intrinsic striped patterns giving rise to hexagonal lattices for intermediate values of the forcing velocity. The phenomenon is understood in the framework of the corresponding amplitude equations, which unveils a complex scenario of dynamical behaviors.
Resumo:
In lentic water bodies, such as lakes, the water temperature near the surface typically increases during the day, and decreases during the night as a consequence of the diurnal radiative forcing (solar and infrared radiation). These temperature variations penetrate vertically into the water, transported mainly by heat conduction enhanced by eddy diffusion, which may vary due to atmospheric conditions, surface wave breaking, and internal dynamics of the water body. These two processes can be described in terms of an effective thermal diffusivity, which can be experimentally estimated. However, the transparency of the water (depending on turbidity) also allows solar radiation to penetrate below the surface into the water body, where it is locally absorbed (either by the water or by the deployed sensors). This process makes the estimation of effective thermal diffusivity from experimental water temperature profiles more difficult. In this study, we analyze water temperature profiles in a lake with the aim of showing that assessment of the role played by radiative forcing is necessary to estimate the effective thermal diffusivity. To this end we investigate diurnal water temperature fluctuations with depth. We try to quantify the effect of locally absorbed radiation and assess the impact of atmospheric conditions (wind speed, net radiation) on the estimation of the thermal diffusivity. The whole analysis is based on the results of fiber optic distributed temperature sensing, which allows unprecedented high spatial resolution measurements (∼4 mm) of the temperature profile in the water and near the water surface.
Resumo:
River flow in Alpine environments is likely to be highly sensitive to climate change because of the effects of warming upon snow and ice, and hence the intra-annual distribution of river runoff. It is also likely to be influenced strongly by human impacts both upon hydrology (e.g. flow abstraction) and river regulation. This paper compares the river flow and sediment flux of two Alpine drainage basins over the last 5 to 7 decades, one that is largely unimpacted by human activities, one strongly impacted by flow abstraction for hydroelectricity. The analysis shows that both river flow and sediment transport capacity are strongly dependent upon the effects of temperature and precipitation availability upon snow accumulation. As the latter tends to increase annual maximum flows, and given the non-linear form of most sediment transport laws, current warming trends may lead to increased sedimentation in Alpine rivers. However, extension to a system impacted upon by flow abstraction reveals the dominant effect that human activity can have upon river sedimentation but also how human response to sediment management has co-evolved with climate forcing to make disentangling the two very difficult.