168 resultados para Solvable
Resumo:
We extend the results of spin ladder models associated with the Lie algebras su(2(n)) to the case of the orthogonal and symplectic algebras o(2(n)), sp(2(n)) where n is the number of legs for the system. Two classes of models are found whose symmetry, either orthogonal or symplectic, has an explicit n dependence. Integrability of these models is shown for an arbitrary coupling of XX-type rung interactions and applied magnetic field term.
Resumo:
A new algebraic Bethe ansatz scheme is proposed to diagonalize classes of integrable models relevant to the description of Bose-Einstein condensation in dilute alkali gases. This is achieved by introducing the notion of Z-graded representations of the Yang-Baxter algebra. (C) 2003 American Institute of Physics.
Resumo:
International Journal of Algebra and Computation, 15, nº 3 (2005), p. 547-570
Resumo:
Two logically distinct and permissive extensions of iterative weak dominance are introduced for games with possibly vector-valued payoffs. The first, iterative partial dominance, builds on an easy-to check condition but may lead to solutions that do not include any (generalized) Nash equilibria. However, the second and intuitively more demanding extension, iterative essential dominance, is shown to be an equilibrium refinement. The latter result includes Moulin’s (1979) classic theorem as a special case when all players’ payoffs are real-valued. Therefore, essential dominance solvability can be a useful solution concept for making sharper predictions in multicriteria games that feature a plethora of equilibria.
Resumo:
A new solvable model of synchronization dynamics is introduced. It consists of a system of long range interacting tops or magnetic moments with random precession frequencies. The model allows for an explicit study of orientational effects in synchronization phenomena as well as nonlinear processes in resonance phenomena in strongly coupled magnetic systems. A stability analysis of the incoherent solution is performed for different types of orientational disorder. A system with orientational disorder always synchronizes in the absence of noise.
Resumo:
Populations of phase oscillators interacting globally through a general coupling function f(x) have been considered. We analyze the conditions required to ensure the existence of a Lyapunov functional giving close expressions for it in terms of a generating function. We have also proposed a family of exactly solvable models with singular couplings showing that it is possible to map the synchronization phenomenon into other physical problems. In particular, the stationary solutions of the least singular coupling considered, f(x) = sgn(x), have been found analytically in terms of elliptic functions. This last case is one of the few nontrivial models for synchronization dynamics which can be analytically solved.
Resumo:
We introduce a stochastic heterogeneous interacting-agent model for the short-time non-equilibrium evolution of excess demand and price in a stylized asset market. We consider a combination of social interaction within peer groups and individually heterogeneous fundamentalist trading decisions which take into account the market price and the perceived fundamental value of the asset. The resulting excess demand is coupled to the market price. Rigorous analysis reveals that this feedback may lead to price oscillations, a single bounce, or monotonic price behaviour. The model is a rare example of an analytically tractable interacting-agent model which allows LIS to deduce in detail the origin of these different collective patterns. For a natural choice of initial distribution, the results are independent of the graph structure that models the peer network of agents whose decisions influence each other. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Supersymmetric quantum mechanics can be used to obtain the spectrum and eigenstates of one-dimensional Hamiltonians. It is particularly useful when applied to partially solvable potentials because a superalgebra allows us to compute the spectrum state by state. Some solutions for the truncated Coulomb potential, an asymptotically linear potential, and a nonpolynomial potential are shown to exemplify the method.
Resumo:
We investigate the thermodynamics of an integrable spin ladder model which possesses a free parameter besides rung and leg couplings. The model is exactly solvable by means of the Bethe ansatz and exhibits a phase transition between a gapped and a gapless spin excitation spectrum. The magnetic susceptibility is obtained numerically and its dependence on the anisotropy parameter is determined. The spin gap obtained from the susceptibility curve and the one obtained from the Bethe ansatz equations are in very good agreement. Our results for the magnetic susceptibility fit well the experimental data for the organometallic compounds (5IAP)(2)CuBr4 . 2H(2)O (Landee C. P. et al., Phys. Rev. B, 63 (2001) 100402(R)) Cu-2(C5H12N2)(2)Cl-4 (Hayward C. A., Poilblanc D. and Levy L. P., Phys. Rev. B, 54 (1996) R12649, Chaboussant G. et al., Phys. Rev. Lett., 19 ( 1997) 925; Phys. Rev. B, 55 ( 1997) 3046.) and (C5H12N)(2)CuBr4 (Watson B. C. et al., Phys. Rev. Lett., 86 ( 2001) 5168) in the strong-coupling regime.
Resumo:
In this work we discuss some exactly solvable Klein-Gordon equations. We basically discuss the existence of classes of potentials with different nonrelativistic limits, but which shares the intermediate effective Schroedinger differential equation. We comment about the possible use of relativistic exact solutions as approximations for nonrelativistic inexact potentials. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Some nonlinear differential systems in (2+1) dimensions are characterized by means of asymptotic modules involving two poles and a ring of linear differential operators with scalar coefficients.Rational and soliton-like are exhibited. If these coefficients are rational functions, the formalism leads to nonlinear evolution equations with constraints. © 1989.
Resumo:
The Green's functions of the recently discovered conditionally exactly solvable potentials are computed. This is done through the use of a second-order differential realization of the so(2,1) Lie algebra. So we present the dynamical symmetry underlying the solvability of such potentials and show that they belong to a general class of solvable and partially solvable potentials. © 1994 The American Physical Society.