950 resultados para GRAPHS
Resumo:
We present a method for topological SLAM that specifically targets loop closing for edge-ordered graphs. Instead of using a heuristic approach to accept or reject loop closing, we propose a probabilistically grounded multi-hypothesis technique that relies on the incremental construction of a map/state hypothesis tree. Loop closing is introduced automatically within the tree expansion, and likely hypotheses are chosen based on their posterior probability after a sequence of sensor measurements. Careful pruning of the hypothesis tree keeps the growing number of hypotheses under control and a recursive formulation reduces storage and computational costs. Experiments are used to validate the approach.
Resumo:
This paper describes the use of property graphs for mapping data between AEC software tools, which are not linked by common data formats and/or other interoperability measures. The intention of introducing this in practice, education and research is to facilitate the use of diverse, non-integrated design and analysis applications by a variety of users who need to create customised digital workflows, including those who are not expert programmers. Data model types are examined by way of supporting the choice of directed, attributed, multi-relational graphs for such data transformation tasks. A brief exemplar design scenario is also presented to illustrate the concepts and methods proposed, and conclusions are drawn regarding the feasibility of this approach and directions for further research.
Resumo:
Detecting anomalies in the online social network is a significant task as it assists in revealing the useful and interesting information about the user behavior on the network. This paper proposes a rule-based hybrid method using graph theory, Fuzzy clustering and Fuzzy rules for modeling user relationships inherent in online-social-network and for identifying anomalies. Fuzzy C-Means clustering is used to cluster the data and Fuzzy inference engine is used to generate rules based on the cluster behavior. The proposed method is able to achieve improved accuracy for identifying anomalies in comparison to existing methods.
Resumo:
In recent years, considerable research efforts have been directed to micro-array technologies and their role in providing simultaneous information on expression profiles for thousands of genes. These data, when subjected to clustering and classification procedures, can assist in identifying patterns and providing insight on biological processes. To understand the properties of complex gene expression datasets, graphical representations can be used. Intuitively, the data can be represented in terms of a bipartite graph, with weighted edges corresponding to gene-sample node couples in the dataset. Biologically meaningful subgraphs can be sought, but performance can be influenced both by the search algorithm, and, by the graph-weighting scheme and both merit rigorous investigation. In this paper, we focus on edge-weighting schemes for bipartite graphical representation of gene expression. Two novel methods are presented: the first is based on empirical evidence; the second on a geometric distribution. The schemes are compared for several real datasets, assessing efficiency of performance based on four essential properties: robustness to noise and missing values, discrimination, parameter influence on scheme efficiency and reusability. Recommendations and limitations are briefly discussed. Keywords: Edge-weighting; weighted graphs; gene expression; bi-clustering
Resumo:
The literacy demands of tables and graphs are different from those of prose texts such as narrative. This paper draws from part of a qualitative case study which sought to investigate strategies that scaffold and enhance the teaching and learning of varied representations in text. As indicated in the paper, the method focused on the teaching and learning of tables and graphs with use of Freebody and Luke's (1990) four resources model from literacy education.
Resumo:
The Reeb graph tracks topology changes in level sets of a scalar function and finds applications in scientific visualization and geometric modeling. This paper describes a near-optimal two-step algorithm that constructs the Reeb graph of a Morse function defined over manifolds in any dimension. The algorithm first identifies the critical points of the input manifold, and then connects these critical points in the second step to obtain the Reeb graph. A simplification mechanism based on topological persistence aids in the removal of noise and unimportant features. A radial layout scheme results in a feature-directed drawing of the Reeb graph. Experimental results demonstrate the efficiency of the Reeb graph construction in practice and its applications.
Resumo:
A unit cube in k-dimension (or a k-cube) is defined as the Cartesian product R-1 x R-2 x ... x R-k, where each R-i is a closed interval on the real line of the form [a(j), a(i), + 1]. The cubicity of G, denoted as cub(G), is the minimum k such that G is the intersection graph of a collection of k-cubes. Many NP-complete graph problems can be solved efficiently or have good approximation ratios in graphs of low cubicity. In most of these cases the first step is to get a low dimensional cube representation of the given graph. It is known that for graph G, cub(G) <= left perpendicular2n/3right perpendicular. Recently it has been shown that for a graph G, cub(G) >= 4(Delta + 1) In n, where n and Delta are the number of vertices and maximum degree of G, respectively. In this paper, we show that for a bipartite graph G = (A boolean OR B, E) with |A| = n(1), |B| = n2, n(1) <= n(2), and Delta' = min {Delta(A),Delta(B)}, where Delta(A) = max(a is an element of A)d(a) and Delta(B) = max(b is an element of B) d(b), d(a) and d(b) being the degree of a and b in G, respectively , cub(G) <= 2(Delta' + 2) bar left rightln n(2)bar left arrow. We also give an efficient randomized algorithm to construct the cube representation of G in 3 (Delta' + 2) bar right arrowIn n(2)bar left arrow dimension. The reader may note that in general Delta' can be much smaller than Delta.
Resumo:
We show that the cubicity of a connected threshold graph is equal to inverted right perpendicularlog(2) alpha inverted left perpendicular, where alpha is its independence number.
Resumo:
A graph is said to be k-variegated if its vertex set can be partitioned into k equal parts such that each vertex is adjacent to exactly one vertex from every other part not containing it. Bednarek and Sanders [1] posed the problem of characterizing k-variegated graphs. V.N. Bhat-Nayak, S.A. Choudum and R.N. Naik [2] gave the characterization of 2-variegated graphs. In this paper we characterize k-variegated graphs for k greater-or-equal, slanted 3.
Resumo:
Functional dependencies in relational databases are investigated. Eight binary relations, viz., (1) dependency relation, (2) equipotence relation, (3) dissidence relation, (4) completion relation, and dual relations of each of them are described. Any one of these eight relations can be used to represent the functional dependencies in a database. Results from linear graph theory are found helpful in obtaining these representations. The dependency relation directly gives the functional dependencies. The equipotence relation specifies the dependencies in terms of attribute sets which functionally determine each other. The dissidence relation specifies the dependencies in terms of saturated sets in a very indirect way. Completion relation represents the functional dependencies as a function, the range of which turns out to be a lattice. Depletion relation which is the dual of the completion relation can also represent functional dependencies and similarly can the duals of dependency, equipotence, and dissidence relations. The class of depleted sets, which is the dual of saturated sets, is defined and used in the study of depletion relations.
Resumo:
The Reeb graph tracks topology changes in level sets of a scalar function and finds applications in scientific visualization and geometric modeling. We describe an algorithm that constructs the Reeb graph of a Morse function defined on a 3-manifold. Our algorithm maintains connected components of the two dimensional levels sets as a dynamic graph and constructs the Reeb graph in O(nlogn+nlogg(loglogg)3) time, where n is the number of triangles in the tetrahedral mesh representing the 3-manifold and g is the maximum genus over all level sets of the function. We extend this algorithm to construct Reeb graphs of d-manifolds in O(nlogn(loglogn)3) time, where n is the number of triangles in the simplicial complex that represents the d-manifold. Our result is a significant improvement over the previously known O(n2) algorithm. Finally, we present experimental results of our implementation and demonstrate that our algorithm for 3-manifolds performs efficiently in practice.
Resumo:
A k-cube (or ``a unit cube in k dimensions'') is defined as the Cartesian product R-1 x . . . x R-k where R-i (for 1 <= i <= k) is an interval of the form [a(i), a(i) + 1] on the real line. The k-cube representation of a graph G is a mapping of the vertices of G to k-cubes such that the k-cubes corresponding to two vertices in G have a non-empty intersection if and only if the vertices are adjacent. The cubicity of a graph G, denoted as cub(G), is defined as the minimum dimension k such that G has a k-cube representation. An interval graph is a graph that can be represented as the intersection of intervals on the real line - i. e., the vertices of an interval graph can be mapped to intervals on the real line such that two vertices are adjacent if and only if their corresponding intervals overlap. We show that for any interval graph G with maximum degree Delta, cub(G) <= inverted right perpendicular log(2) Delta inverted left perpendicular + 4. This upper bound is shown to be tight up to an additive constant of 4 by demonstrating interval graphs for which cubicity is equal to inverted right perpendicular log(2) Delta inverted left perpendicular.
Resumo:
A k-dimensional box is the Cartesian product R-1 x R-2 x ... x R-k where each R-i is a closed interval on the real line. The boxicity of a graph G, denoted as box(G) is the minimum integer k such that G is the intersection graph of a collection of k-dimensional boxes. Halin graphs are the graphs formed by taking a tree with no degree 2 vertex and then connecting its leaves to form a cycle in such a way that the graph has a planar embedding. We prove that if G is a Halin graph that is not isomorphic to K-4, then box(G) = 2. In fact, we prove the stronger result that if G is a planar graph formed by connecting the leaves of any tree in a simple cycle, then box(G) = 2 unless G is isomorphic to K4 (in which case its boxicity is 1).