268 resultados para Biometrics
Resumo:
Comunication in Internationa Conference with Peer Review First International Congress on Cardiovasular Technologies - CARDIOTECHNIX, Vilamoura, Portugal, 2013
Resumo:
Electrocardiographic (ECG) signals are emerging as a recent trend in the field of biometrics. In this paper, we propose a novel ECG biometric system that combines clustering and classification methodologies. Our approach is based on dominant-set clustering, and provides a framework for outlier removal and template selection. It enhances the typical workflows, by making them better suited to new ECG acquisition paradigms that use fingers or hand palms, which lead to signals with lower signal to noise ratio, and more prone to noise artifacts. Preliminary results show the potential of the approach, helping to further validate the highly usable setups and ECG signals as a complementary biometric modality.
Resumo:
The Check Your Biosignals Here initiative (CYBHi) was developed as a way of creating a dataset and consistently repeatable acquisition framework, to further extend research in electrocardiographic (ECG) biometrics. In particular, our work targets the novel trend towards off-the-person data acquisition, which opens a broad new set of challenges and opportunities both for research and industry. While datasets with ECG signals collected using medical grade equipment at the chest can be easily found, for off-the-person ECG data the solution is generally for each team to collect their own corpus at considerable expense of resources. In this paper we describe the context, experimental considerations, methods, and preliminary findings of two public datasets created by our team, one for short-term and another for long-term assessment, with ECG data collected at the hand palms and fingers. (C) 2013 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Electrocardiography (ECG) biometrics is emerging as a viable biometric trait. Recent developments at the sensor level have shown the feasibility of performing signal acquisition at the fingers and hand palms, using one-lead sensor technology and dry electrodes. These new locations lead to ECG signals with lower signal to noise ratio and more prone to noise artifacts; the heart rate variability is another of the major challenges of this biometric trait. In this paper we propose a novel approach to ECG biometrics, with the purpose of reducing the computational complexity and increasing the robustness of the recognition process enabling the fusion of information across sessions. Our approach is based on clustering, grouping individual heartbeats based on their morphology. We study several methods to perform automatic template selection and account for variations observed in a person's biometric data. This approach allows the identification of different template groupings, taking into account the heart rate variability, and the removal of outliers due to noise artifacts. Experimental evaluation on real world data demonstrates the advantages of our approach.
Resumo:
Behavioral biometrics is one of the areas with growing interest within the biosignal research community. A recent trend in the field is ECG-based biometrics, where electrocardiographic (ECG) signals are used as input to the biometric system. Previous work has shown this to be a promising trait, with the potential to serve as a good complement to other existing, and already more established modalities, due to its intrinsic characteristics. In this paper, we propose a system for ECG biometrics centered on signals acquired at the subject's hand. Our work is based on a previously developed custom, non-intrusive sensing apparatus for data acquisition at the hands, and involved the pre-processing of the ECG signals, and evaluation of two classification approaches targeted at real-time or near real-time applications. Preliminary results show that this system leads to competitive results both for authentication and identification, and further validate the potential of ECG signals as a complementary modality in the toolbox of the biometric system designer.
Resumo:
Current Electrocardiographic (ECG) signal acquisition methods are generally highly intrusive, as they involve the use of pre-gelled electrodes and cabled sensors placed directly on the person, at the chest or limbs level. Moreover, systems that make use of alternative conductive materials to overcome this issue, only provide heart rate information and not the detailed signal itself. We present a comparison and evaluation of two types of dry electrodes as interface with the skin, targeting wearable and low intrusiveness applications, which enable ECG measurement without the need for any apparatus permanently fitted to the individual. In particular, our approach is targeted at ECG biometrics using signals collected at the hand or finger level. A custom differential circuit with virtual ground was also developed for enhanced usability. Our work builds upon the current stateof-the-art in sensoring devices and processing tools, and enables novel data acquisition settings through the use of dry electrodes. Experimental evaluation was performed for Ag/AgCl and Electrolycra materials, and results show that both materials exhibit adequate performance for the intended application.
Resumo:
Electrocardiogram (ECG) biometrics are a relatively recent trend in biometric recognition, with at least 13 years of development in peer-reviewed literature. Most of the proposed biometric techniques perform classifi-cation on features extracted from either heartbeats or from ECG based transformed signals. The best representation is yet to be decided. This paper studies an alternative representation, a dissimilarity space, based on the pairwise dissimilarity between templates and subjects' signals. Additionally, this representation can make use of ECG signals sourced from multiple leads. Configurations of three leads will be tested and contrasted with single-lead experiments. Using the same k-NN classifier the results proved superior to those obtained through a similar algorithm which does not employ a dissimilarity representation. The best Authentication EER went as low as 1:53% for a database employing 503 subjects. However, the employment of extra leads did not prove itself advantageous.
Resumo:
Biometric recognition is emerging has an alternative solution for applications where the privacy of the information is crucial. This paper presents an embedded biometric recognition system based on the Electrocardiographic signals (ECG) for individual identification and authentication. The proposed system implements a real-time state-of-the-art recognition algorithm, which extracts information from the frequency domain. The system is based on a ARM Cortex 4. Preliminary results show that embedded platforms are a promising path for the implementation of ECG-based applications in real-world scenario.
Resumo:
This article explores the potential of ICT-based biometrics for monitoring the health status of the elderly people. It departs from specific ageing and biometric traits to then focus on behavioural biometric traits like handwriting, speech and gait to finally explore their practical application in health monitoring of elderly.
Resumo:
The agouti is a species intensively hunted throughout the Amazon and the semi-arid regions of northeastern Brazil. Considering the current trend in conservation management of wild species, the aim of this study was to determine the morphometric reference to the heart of agouti raised in captivity, based on thoracic and cardiac measurements in these animals. Thirty adult agoutis, 1 to 3 years of age, without clinical signs of cardiac disease were selected. The animals were physically restrained and radiographies in laterolateral (LL) and ventrodorsal (VD) recumbence were produced. The following measures were taken: the apicobasilar length of the heart (at the most cranial height of the Carina region to the heart apex) (AB), maximum width of the heart perpendicular to AB (CD), heart inclination angle (AIC), trachea inclination angle (AIT), distance from the right heart wall (DPTd), distance from the left heart wall (DPTe) and vertical depth of the thorax, and the ventral face of the vertebral column to the dorsal border of the sternum at the level of the trachea bifurcation (H). The ratios between AB/CD, AB/H and CD/H were also analyzed. To calculate the vertebral heart scale (VHS), the AB and CD measurements were laid over the thoracic vertebra starting at T4. Radiographic evaluation showed values consistent with those reported in small animals and some wild and exotic species. The main biometric values in the chest cavity and heart of agouti are arranged as follows: (1) The ratios between AB/H ratio and CD/H were not sensitive for identifying heart increases (p>0.05), while the ratio AB/CD was more sensitive in this identification (p<0.05); (2) AIC: 21.2±6.4º (mean between male and famale); (3) AIT for males and females: 9.93±3.23° and 8.4±3.94°; (4) DPTd and DPTe for males: 0.97±0.40cm and 0.7±0.30cm; (5) DPTd and DPTe for females: 1.12±0.42cm and 01.02±0.43cm; (6) VHS for males and females: 7.75±0.48v e 7.61±0.34v; (7) The caudal vena cava (CVC) was visualized dorsal-cranially and located right of the midline. The data obtained allowed the acquisition of the first reference values for biometry of the heart of agoutis, contributing to better understanding of cardiac morphology and identification of cardiomyopathy in these animals.
Resumo:
Automated border control (ABC) is concerned with fast and secure processing for intelligence-led identification. The FastPass project aims to build a harmonised, modular reference system for future European ABC. When biometrics is taken on board as identity, spoofing attacks become a concern. This paper presents current research in algorithm development for counter-spoofing attacks in biometrics. Focussing on three biometric traits, face, fingerprint, and iris, it examines possible types of spoofing attacks, and reviews existing algorithms reported in relevant academic papers in the area of countering measures to biometric spoofing attacks. It indicates that the new developing trend is fusion of multiple biometrics against spoofing attacks.
Resumo:
The ever increasing spurt in digital crimes such as image manipulation, image tampering, signature forgery, image forgery, illegal transaction, etc. have hard pressed the demand to combat these forms of criminal activities. In this direction, biometrics - the computer-based validation of a persons' identity is becoming more and more essential particularly for high security systems. The essence of biometrics is the measurement of person’s physiological or behavioral characteristics, it enables authentication of a person’s identity. Biometric-based authentication is also becoming increasingly important in computer-based applications because the amount of sensitive data stored in such systems is growing. The new demands of biometric systems are robustness, high recognition rates, capability to handle imprecision, uncertainties of non-statistical kind and magnanimous flexibility. It is exactly here that, the role of soft computing techniques comes to play. The main aim of this write-up is to present a pragmatic view on applications of soft computing techniques in biometrics and to analyze its impact. It is found that soft computing has already made inroads in terms of individual methods or in combination. Applications of varieties of neural networks top the list followed by fuzzy logic and evolutionary algorithms. In a nutshell, the soft computing paradigms are used for biometric tasks such as feature extraction, dimensionality reduction, pattern identification, pattern mapping and the like.
Resumo:
A biometric study of caste development was carried out using Nasutitermes sp., by measuring the height, width, and length of the head, the length and width of the pronotum and mesonotum, and the length of the posterior tibia. These measurements were taken on 200 individuals, including larvae, nymphs, workers, pre-soldiers and soldiers. For instar separation, it was verified that the Principal Component Analysis (P.C.A.) was the most efficient methodology. Results of this analysis showed that Nasutitermes coxipoensis follows the general pattern of development presented by other Nasutitermes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
[EN]During the last decade, researchers have verified that clothing can provide information for gender recognition. However, before extracting features, it is necessary to segment the clothing region. We introduce a new clothes segmentation method based on the application of the GrabCut technique over a trixel mesh, obtaining very promising results for a close to real time system. Finally, the clothing features are combined with facial and head context information to outperform previous results in gender recognition with a public database.