973 resultados para tissue level


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sjögren s syndrome (SS) is a common autoimmune disease affecting the lacrimal and salivary glands. SS is characterized by a considerable female predominance and a late age of onset, commonly at the time of adreno- and menopause. The levels of the androgen prohormone dehydroepiandrosterone-sulphate (DHEA-S) in the serum are lower in patients with SS than in age- and sex-matched healthy control subjects. The eventual systemic effects of low androgen levels in SS are not currently well understood. Basement membranes (BM) are specialized layers of extracellular matrix and are composed of laminin (LM) and type IV collagen matrix networks. BMs deliver messages to epithelial cells via cellular LM-receptors including integrins (Int) and Lutheran blood group antigen (Lu). The composition of BMs and distribution of LM-receptors in labial salivary glands (LSGs) of normal healthy controls and patients with SS was assessed. LMs have complex and highly regulated distribution in LSGs. LMs seem to have specific tasks in the dynamic regulation of acinar cell function. LM-111 is important for the normal acinar cell differentiation and its expression is diminished in SS. Also LM-211 and -411 seem to have some acinar specific functional tasks in LSGs. LM-311, -332 and -511 seem to have more general structure maintaining and supporting roles in LSGs and are relatively intact also in SS. Ints α3β1, α6β1, α6β4 and Lu seem to supply structural basis for the firm attachment of epithelial cells to the BM in LSGs. The expression of Ints α1β1 and α2β1 differed clearly from other LM-receptors in that they were found almost exclusively around the acini and intercalated duct cells in salivons suggesting some type of acinar cell compartment-specific or dominant function. Expression of these integrins was lower in SS compared to healthy controls suggesting that the LM-111 and -211-to-Int α1β1 and α2β1 interactions are defective in SS and are crucial to the maintenance of the acini in LSGs. DHEA/DHEA-S concentration in serum and locally in saliva of patients with SS seems to have effects on the salivary glands. These effects were first detected using the androgen-dependent CRISP-3 protein, the production and secretion of which were clearly diminished in SS. This might be due to the impaired function of the intracrine DHEA prohormone metabolizing machinery, which fails to successfully convert DHEA into its active metabolites in LSGs. The progenitor epithelial cells from the intercalated ductal area of LSGs migrate to the acinar compartment and then undergo a phenotype change into secretory acinar cells. This migration and phenotype change seem to be regulated by the LM-111-to-Int α1β1/Int α2β1 interactions. Lack of these interactions could be one factor limiting the normal remodelling process. Androgens are effective stimulators of Int α1β1 and α2β1 expression in physiologic concentrations. Addition of DHEA to the culture medium had effective stimulating effect on the Int α1β1 and α2β1 expression and its effect may be deficient in the LSGs of patients with SS.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sudden cardiac death is often caused by cardiac arrhythmias. Recently, special attention has been given to a certain arrhythmogenic condition, the long-QT syndrome, which occurs as a result of genetic mutations or drug toxicity. The underlying mechanisms of arrhythmias, caused by the long-QT syndrome, are not fully understood. However, arrhythmias are often connected to special excitations of cardiac cells, called early afterdepolarizations (EADs), which are depolarizations during the repolarizing phase of the action potential. So far, EADs have been studied mainly in isolated cardiac cells. However, the question on how EADs at the single-cell level can result in fibrillation at the tissue level, especially in human cell models, has not been widely studied yet. In this paper, we study wave patterns that result from single-cell EAD dynamics in a mathematical model for human ventricular cardiac tissue. We induce EADs by modeling experimental conditions which have been shown to evoke EADs at a single-cell level: by an increase of L-type Ca currents and a decrease of the delayed rectifier potassium currents. We show that, at the tissue level and depending on these parameters, three types of abnormal wave patterns emerge. We classify them into two types of spiral fibrillation and one type of oscillatory dynamics. Moreover, we find that the emergent wave patterns can be driven by calcium or sodium currents and we find phase waves in the oscillatory excitation regime. From our simulations we predict that arrhythmias caused by EADs can occur during normal wave propagation and do not require tissue heterogeneities. Experimental verification of our results is possible for experiments at the cell-culture level, where EADs can be induced by an increase of the L-type calcium conductance and by the application of I-Kr blockers, and the properties of the emergent patterns can be studied by optical mapping of the voltage and calcium.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To determine lycopene uptake and tissue distribution in ferrets (Mustela putorius furo) and F344 rats, we supplemented orally 4.6 mg/(kg body wt-d) lycopene in a tomato oleoresin-com oil mixture (experimental groups). After 9 wk of supplementation, the animals were killed and blood and organs were collected. Plasma and tissue carotenoids were extracted and measured using HPLC. Mean concentrations of lycopene (nmol/kg wet tissue) in saponified tissues of ferrets were as follows: liver 933, intestine 73, prostate 12.7 and stomach 9.3. Levels of lycopene (nmol/kg wet tissue) in saponified tissue of rats were as follows: liver 14213, intestine 3125, stomach 78.6, prostate 24 and testis 3.9. When these organs were extracted without saponification, the lycopene levels were lower, except for rat testis. All-translycopene was the predominant isomer found in tomato oleoresin and in the majority of rat tissues, whereas cislycopenes were predominant in rat prostate and plasma. This pattern was reversed in ferrets. The results show the following: 1) lycopene from tomato oleoresin is absorbed and stored primarily in the liver of both animals; 2) saponification generally improves the extraction of lycopene from most tissues of both animals; 3) cis-lycopene and all- translycopene are the predominant isomers in ferret and rat tissues, respectively; and 4) rats absorb lycopene more effectively than ferrets.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Effects of dietary α-lipoic acid (LA) and ascorbic acid (AA) on the growth, tissue vitamin C and tocopherol (vitamin E) levels, and malondialdehyde levels were examined in the tropical fish pacu, Piaractus mesopotamicus. Pacu juveniles were fed one of four casein-gelatin-based diets for 8 weeks: with 0.05% AA and 0.1% LA (+AA+LA), with AA and without LA (+AA-LA), without AA and with LA (-AA+LA), and without AA and LA (-AA-LA). When the fish received quantities of feed equal to 1.9-2.5% of its body weight, growth was not influenced, regardless of the presence of AA or LA throughout most of the experimental period. Growth was, however, slightly but significantly lower at week 8 in the AA-deficient/LA-supplemented group. An AA-deficient diet caused a highly significant reduction in both total AA and dehydroascorbic acid content in the liver and gill tissues. This reduction of tissue AA concentrations was reversed in a significant manner by LA (antioxidant-sparing effect). The 8-week-long vitamin C deprivation was sufficient to initiate the reduction in tissue ascorbic acid; however, total ascorbate in the liver of fish in the (-)AA/(+)LA group was 127.7±54.3 nmol g-1 tissue, whereas it was 28.6±26.3 nmol g-1 in the (-)AA/(-)LA group, a 4.4-fold difference. This mitigating effect of the addition of the endogenous antioxidant LA to the diet indicates that LA exerts a vitamin C-sparing effect in teleost fish that by far exceeds the phenomena demonstrated in non-scurvy-prone mammals. There was no difference among the different diet groups for vitamin E and malondialdehyde levels in the liver. These results suggest that LA is a potent substance for the prevention of AA deficiency in cultured fishes. The optimal dietary level of LA needs to be determined in the light of the slight reduction in body weight gain after 8 weeks of feeding in the absence of AA. © Springer Science+Business Media, Inc. 2006.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: To compare the soft and hard tissue healing and remodeling around tissue-level implants with different neck configurations after at least 1 year of functional loading. Material and methods: Eighteen patients with multiple missing teeth in the posterior area received two implants inserted in the same sextant. One test (T) implant with a 1.8 mm turned neck and one control (C) implant with a 2.8 mm turned neck were randomly assigned. All implants were placed transmucosally to the same sink depth of approximately 1.8 mm. Peri-apical radiographs were obtained using the paralleling technique and digitized. Two investigators blinded to the implant type-evaluated soft and hard tissue conditions at baseline, 6 months and 1 year after loading. Results: The mean crestal bone levels and soft tissue parameters were not significantly different between T and C implants at all time points. However, T implants displayed significantly less crestal bone loss than C implants after 1 year. Moreover, a frequency analysis revealed a higher percentage (50%) of T implants with crestal bone levels 1–2 mm below the implant shoulder compared with C implants (5.6%) 1 year after loading. Conclusion: Implants with a reduced height turned neck of 1.8 mm may, indeed, lower the crestal bone resorption and hence, may maintain higher crestal bone levels than do implants with a 2.8 mm turned neck, when sunk to the same depth. Moreover, several factors other than the vertical positioning of the moderately rough SLA surface may influence crestal bone levels after 1 year of function.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

High-fat intake leading to obesity contributes to the development of non-insulin-dependent diabetes mellitus (NIDDM, type 2). Similarly, mice fed a high-fat (safflower oil) diet develop defective glycemic control, hyperglycemia, and obesity. To assess the effect of a modest increase in the expression of GLUT4 (the insulin-responsive glucose transporter) on impaired glycemic control caused by fat feeding, transgenic mice harboring a GLUT4 minigene were fed a high-fat diet. Low-level tissue-specific (heart, skeletal muscle, and adipose tissue) expression of the GLUT4 minigene in transgenic mice prevented the impairment of glycemic control and accompanying hyperglycemia, but not obesity, caused by fat feeding. Thus, a small increase (< or = 2-fold) in the tissue level of GLUT4 prevents a primary symptom of the diabetic state in a mouse model, suggesting a possible target for intervention in the treatment of NIDDM.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many of the equations describing the dynamics of neural systems are written in terms of firing rate functions, which themselves are often taken to be threshold functions of synaptic activity. Dating back to work by Hill in 1936 it has been recognized that more realistic models of neural tissue can be obtained with the introduction of state-dependent dynamic thresholds. In this paper we treat a specific phenomenological model of threshold accommodation that mimics many of the properties originally described by Hill. Importantly we explore the consequences of this dynamic threshold at the tissue level, by modifying a standard neural field model of Wilson-Cowan type. As in the case without threshold accommodation classical Mexican-Hat connectivity is shown to allow for the existence of spatially localized states (bumps) in both one and two dimensions. Importantly an analysis of bump stability in one dimension, using recent Evans function techniques, shows that bumps may undergo instabilities leading to the emergence of both breathers and traveling waves. Moreover, a similar analysis for traveling pulses leads to the conditions necessary to observe a stable traveling breather. In the regime where a bump solution does not exist direct numerical simulations show the possibility of self-replicating bumps via a form of bump splitting. Simulations in two space dimensions show analogous localized and traveling solutions to those seen in one dimension. Indeed dynamical behavior in this neural model appears reminiscent of that seen in other dissipative systems that support localized structures, and in particular those of coupled cubic complex Ginzburg-Landau equations. Further numerical explorations illustrate that the traveling pulses in this model exhibit particle like properties, similar to those of dispersive solitons observed in some three component reaction-diffusion systems. A preliminary account of this work first appeared in S Coombes and M R Owen, Bumps, breathers, and waves in a neural network with spike frequency adaptation, Physical Review Letters 94 (2005), 148102(1-4).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Earlier studies have shown that the influence of fixation stability on bone healing diminishes with advanced age. The goal of this study was to unravel the relationship between mechanical stimulus and age on callus competence at a tissue level. Using 3D in vitro micro-computed tomography derived metrics, 2D in vivo radiography, and histology, we investigated the influences of age and varying fixation stability on callus size, geometry, microstructure, composition, remodeling, and vascularity. Compared were four groups with a 1.5-mm osteotomy gap in the femora of Sprague–Dawley rats: Young rigid (YR), Young semirigid (YSR), Old rigid (OR), Old semirigid (OSR). Hypothesis was that calcified callus microstructure and composition is impaired due to the influence of advanced age, and these individuals would show a reduced response to fixation stabilities. Semirigid fixations resulted in a larger ΔCSA (Callus cross-sectional area) compared to rigid groups. In vitro μCT analysis at 6 weeks postmortem showed callus bridging scores in younger animals to be superior than their older counterparts (pb0.01). Younger animals showed (i) larger callus strut thickness (pb0.001), (ii) lower perforation in struts (pb0.01), and (iii) higher mineralization of callus struts (pb0.001). Callus mineralization was reduced in young animals with semirigid fracture fixation but remained unaffected in the aged group. While stability had an influence, age showed none on callus size and geometry of callus. With no differences observed in relative osteoid areas in the callus ROI, old as well as semirigid fixated animals showed a higher osteoclast count (pb0.05). Blood vessel density was reduced in animals with semirigid fixation (pb0.05). In conclusion, in vivo monitoring indicated delayed callus maturation in aged individuals. Callus bridging and callus competence (microstructure and mineralization) were impaired in individuals with an advanced age. This matched with increased bone resorption due to higher osteoclast numbers. Varying fixator configurations in older individuals did not alter the dominant effect of advanced age on callus tissue mineralization, unlike in their younger counterparts. Age-associated influences appeared independent from stability. This study illustrates the dominating role of osteoclastic activity in age-related impaired healing, while demonstrating the optimization of fixation parameters such as stiffness appeared to be less effective in influencing healing in aged individuals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The behaviour of ion channels within cardiac and neuronal cells is intrinsically stochastic in nature. When the number of channels is small this stochastic noise is large and can have an impact on the dynamics of the system which is potentially an issue when modelling small neurons and drug block in cardiac cells. While exact methods correctly capture the stochastic dynamics of a system they are computationally expensive, restricting their inclusion into tissue level models and so approximations to exact methods are often used instead. The other issue in modelling ion channel dynamics is that the transition rates are voltage dependent, adding a level of complexity as the channel dynamics are coupled to the membrane potential. By assuming that such transition rates are constant over each time step, it is possible to derive a stochastic differential equation (SDE), in the same manner as for biochemical reaction networks, that describes the stochastic dynamics of ion channels. While such a model is more computationally efficient than exact methods we show that there are analytical problems with the resulting SDE as well as issues in using current numerical schemes to solve such an equation. We therefore make two contributions: develop a different model to describe the stochastic ion channel dynamics that analytically behaves in the correct manner and also discuss numerical methods that preserve the analytical properties of the model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The action potential (ap) of a cardiac cell is made up of a complex balance of ionic currents which flow across the cell membrane in response to electrical excitation of the cell. Biophysically detailed mathematical models of the ap have grown larger in terms of the variables and parameters required to model new findings in subcellular ionic mechanisms. The fitting of parameters to such models has seen a large degree of parameter and module re-use from earlier models. An alternative method for modelling electrically exciteable cardiac tissue is a phenomenological model, which reconstructs tissue level ap wave behaviour without subcellular details. A new parameter estimation technique to fit the morphology of the ap in a four variable phenomenological model is presented. An approximation of a nonlinear ordinary differential equation model is established that corresponds to the given phenomenological model of the cardiac ap. The parameter estimation problem is converted into a minimisation problem for the unknown parameters. A modified hybrid Nelder–Mead simplex search and particle swarm optimization is then used to solve the minimisation problem for the unknown parameters. The successful fitting of data generated from a well known biophysically detailed model is demonstrated. A successful fit to an experimental ap recording that contains both noise and experimental artefacts is also produced. The parameter estimation method’s ability to fit a complex morphology to a model with substantially more parameters than previously used is established.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Finite element analyses of the human body in seated postures requires digital models capable of providing accurate and precise prediction of the tissue-level response of the body in the seated posture. To achieve such models, the human anatomy must be represented with high fidelity. This information can readily be defined using medical imaging techniques such as Magnetic Resonance Imaging (MRI) or Computed Tomography (CT). Current practices for constructing digital human models, based on the magnetic resonance (MR) images, in a lying down (supine) posture have reduced the error in the geometric representation of human anatomy relative to reconstructions based on data from cadaveric studies. Nonetheless, the significant differences between seated and supine postures in segment orientation, soft-tissue deformation and soft tissue strain create a need for data obtained in postures more similar to the application posture. In this study, we present a novel method for creating digital human models based on seated MR data. An adult-male volunteer was scanned in a simulated driving posture using a FONAR 0.6T upright MRI scanner with a T1 scanning protocol. To compensate for unavoidable image distortion near the edges of the study, images of the same anatomical structures were obtained in transverse and sagittal planes. Combinations of transverse and sagittal images were used to reconstruct the major anatomical features from the buttocks through the knees, including bone, muscle and fat tissue perimeters, using Solidworks® software. For each MR image, B-splines were created as contours for the anatomical structures of interest, and LOFT commands were used to interpolate between the generated Bsplines. The reconstruction of the pelvis, from MR data, was enhanced by the use of a template model generated in previous work CT images. A non-rigid registration algorithm was used to fit the pelvis template into the MR data. Additionally, MR image processing was conducted to both the left and the right sides of the model due to the intended asymmetric posture of the volunteer during the MR measurements. The presented subject-specific, three-dimensional model of the buttocks and thighs will add value to optimisation cycles in automotive seat development when used in simulating human interaction with automotive seats.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Adolescent idiopathic scoliosis (AIS) is a deformity of the spine, which may 34 require surgical correction by attaching a rod to the patient’s spine using screws 35 implanted in the vertebral bodies. Surgeons achieve an intra-operative reduction in the 36 deformity by applying compressive forces across the intervertebral disc spaces while 37 they secure the rod to the vertebra. We were interested to understand how the 38 deformity correction is influenced by increasing magnitudes of surgical corrective forces 39 and what tissue level stresses are predicted at the vertebral endplates due to the 40 surgical correction. 41 Methods: Patient-specific finite element models of the osseoligamentous spine and 42 ribcage of eight AIS patients who underwent single rod anterior scoliosis surgery were 43 created using pre-operative computed tomography (CT) scans. The surgically altered 44 spine, including titanium rod and vertebral screws, was simulated. The models were 45 analysed using data for intra-operatively measured compressive forces – three load 46 profiles representing the mean and upper and lower standard deviation of this data 47 were analysed. Data for the clinically observed deformity correction (Cobb angle) were 48 compared with the model-predicted correction and the model results investigated to 49 better understand the influence of increased compressive forces on the biomechanics of 50 the instrumented joints. 51 Results: The predicted corrected Cobb angle for seven of the eight FE models were 52 within the 5° clinical Cobb measurement variability for at least one of the force profiles. 53 The largest portion of overall correction was predicted at or near the apical 54 intervertebral disc for all load profiles. Model predictions for four of the eight patients 55 showed endplate-to-endplate contact was occurring on adjacent endplates of one or 56 more intervertebral disc spaces in the instrumented curve following the surgical loading 57 steps. 58 Conclusion: This study demonstrated there is a direct relationship between intra-59 operative joint compressive forces and the degree of deformity correction achieved. The 60 majority of the deformity correction will occur at or in adjacent spinal levels to the apex 61 of the deformity. This study highlighted the importance of the intervertebral disc space 62 anatomy in governing the coronal plane deformity correction and the limit of this 63 correction will be when bone-to-bone contact of the opposing vertebral endplates 64 occurs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigated the clinicopathologic roles of mammalian target of rapamycin (mTOR) expression and its relationship to carcinogenesis and tumor progression in a colorectal adenoma-adenocarcinoma model. Two colon cancer cell lines with different pathologic stages (SW480 and SW48) and 1 normal colonic epithelial cell line (FHC) were used, in addition to 119 colorectal adenocarcinomas and 32 adenomas. mTOR expression profiles at messenger RNA (mRNA) and protein levels were investigated in the cells and tissues using real-time quantification polymerase chain reaction and immunohistochemistry. The findings were correlated with the clinicopathologic features of the tumors. The colon cell line from stage III cancer (SW48) showed higher expression of mTOR mRNA than that from stage II cancer (SW480). At the tissue level, mTOR showed higher mRNA and protein expression in colorectal carcinoma than in adenoma. The mRNA and protein expression was correlated with each other in approximately one-third of the carcinomas and adenomas. High levels of mTOR mRNA expression were noted more in carcinoma or adenoma arising from the distal portion of the large intestine (P = .025 and .019, respectively). Within the colorectal cancer population, a high level of expression of mTOR mRNA was related to the presence of lymph node metastases (P = .031), advanced pathologic stage (P = .05), and presence of persistent disease or tumor recurrence (P = .035). To conclude, the study has indicated that mTOR is likely to be involved in the development and progression of colorectal cancer and is linked to cancer initiation, invasiveness, and progression.