995 resultados para sugar cane harvesting


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During sugar cane harvesting season, which occurs from May to November of each year, the crops are burnt, cut, and transported to the mills. There are reports showing that mutagenic activity and PAH content increase during harvesting season in some areas of Sao Paulo State in comparison with nonharvesting periods. The objective of this work was to preliminarily characterize the mutagenic activity of the total organic extracts as well as corresponding organic fractions of airborne particulate matter (PM) collected twice from two cities, Araraquara (ARQ) and Piracicaba (PRB), during sugar cane harvesting season using the Salmonella/microsome microssuspension assay. One sample collected in Sao Paulo metropolitan area was also included. The mutagenicity of the total extracts ranged from 55 to 320 revertants per cubic meter without the addition of S9 and from not detected to 57 revertants per cubic meter in the presence of S9 in areas with sugar cane plantations. Of the three fractions analyzed, the most polar ones (nitro and oxy) were the most potent. A comparison of the response of TA98 with YG1041 and the increased potencies without S9 indicated that nitro compounds are causing the observed effect. More studies are necessary to verify the sources of the mutagenic activity such as burning of vegetal biomass and combustion of heavy duty vehicles used to transport the sugar cane to the mills. The Salmonella/microsome assay can be an important tool to monitor the atmosphere for mutagenicity during sugar cane harvesting season.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sugar cane biomass is one of the most viable feedstocks for the production of renewable fuels and chemicals. Therefore, processing the whole of crop (WC) (i.e., stalk and trash, instead of stalk only) will increase the amount of available biomass for this purpose. However, effective clarification of juice expressed from WC for raw sugar manufacture is a major challenge because of the amounts and types of non-sucrose impurities (e.g., polysaccharides, inorganics, proteins, etc.) present. Calcium phosphate flocs are important during sugar cane juice clarification because they are responsible for the removal of impurities. Therefore, to gain a better understanding of the role of calcium phosphate flocs during the juice clarification process,the effects of impurities on the physicochemical properties of calcium phosphate flocs were examined using small-angle laser light scattering technique, attenuated total reflectance Fourier transformed infrared spectroscopy, and X-ray powder diffraction. Results on synthetic sugar juice solutions showed that the presence of SiO2 and Na+ ions affected floc size and floc structure. Starch and phosphate ions did not affect the floc structure; however, the former reduced the floc size, whereas the latter increased the floc size. The study revealed that high levels of Na+ ions would negatively affect the clarification process the most, as they would reduce the amount of suspended particles trapped by the flocs. A complementary study on prepared WC juice using cold and cold/intermediate liming techniques was conducted. The study demonstrated that, in comparison to the one-stage (i.e., conventional) clarification process, a two-stage clarification process using cold liming removed more polysaccharides (≤19%),proteins (≤82%), phosphorus (≤53%), and SiO2 (≤23%) in WC juice but increased Ca2+ (≤136%) and sulfur (≤200%)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Australian sugar-producing regions have differed in terms of the extent and rate of incorporation of new technology into harvesting systems. The Mackay sugar industry has lagged behind most other sugar-producing regions in this regard. The reasons for this are addressed by invoking an evolutionary economics perspective. The development of harvesting systems, and the role of technology in shaping them, is mapped and interpreted using the concept of path dependency. Key events in the evolution of harvesting systems are identified, which show how the past has shaped the regional development of harvesting systems. From an evolutionary economics perspective, the outcomes observed are the end result of a specific history.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of colour in raw sugar plays a key role in the marketing strategy of the Australian raw sugar industry. Some sugars are relatively difficult to decolourise during refining and develop colour during storage. A new approach that might result in efficient and cost-effective colour removal during the sugar manufacturing process is the use of an advanced oxidation process (AOP), known as Fenton oxidation, that is, catalytic production of hydroxyl radicals from the decomposition of hydrogen peroxide using ferrous iron. As a first step towards developing this technology, this study determined the composition of colour precursors present in the juice of cane harvested by three different methods. The methods were harvesting cane after burning, harvesting the whole crop with half of the trash extracted and harvesting the whole crop with no trash extracted. The study also investigated the degradation at pH 3, 4 and 5 of a phenolic compound, caffeic acid (3,4–dihydroxycinnamic acid), which is present in sugar cane juice, using both hydrogen peroxide and Fenton’s reagent. The results show that juice expressed from whole crop cane has significantly higher colour than juices expressed from burnt cane. However, the concentrations of phenolic acids were lower in the juices expressed from whole crop cane. The main phenolic acids present in these juices were p-coumaric, vanillic, 2,3–dihydroxybenzoic, gallic and 3,4–dihydroxybenzoic acids. The degradation of caffeic acid significantly improved using Fenton’s reagent in comparison to hydrogen peroxide alone. The Fenton oxidation was optimum at pH 5 when up to ~86 % of caffeic acid degraded within 5 min.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of colour in raw sugar plays a key role in the marketing strategy of the Australian raw sugar industry. Some sugars are relatively difficult to decolourise during refining and develop colour during storage. A new approach that might result in efficient and cost-effective colour removal during the sugar manufacturing process is the use of an advanced oxidation process (AOP), known as Fenton oxidation, that is, catalytic production of hydroxyl radicals from the decomposition of hydrogen peroxide using ferrous iron. As a first step towards developing this technology, this study determined the composition of colour precursors present in the juice of cane harvested by three different methods. The methods were harvesting cane after burning, harvesting the whole crop with half of the trash extracted and harvesting the whole crop with no trash extracted. The study also investigated the degradation at pH 3, 4 and 5 of a phenolic compound, caffeic acid (3,4–dihydroxycinnamic acid), which is present in sugar cane juice, using both hydrogen peroxide and Fenton’s reagent. The results show that juice expressed from whole crop cane has significantly higher colour than juices expressed from burnt cane. However, the concentrations of phenolic acids were lower in the juices expressed from whole crop cane. The main phenolic acids present in these juices were p-coumaric, vanillic, 2,3–dihydroxybenzoic, gallic and 3,4–dihydroxybenzoic acids. The degradation of caffeic acid significantly improved using Fenton’s reagent in comparison to hydrogen peroxide alone. The Fenton oxidation was optimum at pH 5 when up to ~86% of caffeic acid degraded within 5 min.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of tillage systems on soil CO2 emission is a complex issue as different soil types are managed in various ways, from no-till to intensive land preparation. In southern Brazil, the adoption of a new management option has arisen most recently, with no-tillage as well as no burning of crops residues left on soil surface after harvesting, especially in sugar cane areas. Although such practice has helped to restore soil carbon, the tillage impact on soil carbon loss in such areas has not been widely investigated. This study evaluated the effect of moldboard plowing followed by offset disk harrow and chisel plowing on clay oxisolCO(2) emission in a sugar cane field treated with no-tillage and high crop residues input in the last 6 years. Emissions after tillage were compared to undisturbed soil CO2 emissions during a 4-week period by using an LI-6400 system coupled to a portable soil chamber. Conventional tillage caused the highest emission during almost the whole period studied, except for the efflux immediately following tillage, when the reduced plot produced the highest peak. The lowest emissions were recorded 7 days after tillage, at the end of a dry period, when soil moisture reached its lowest rate. A linear regression between Soil CO2 effluxes and soil moisture in the no-till and conventional plots corroborate the fact that moisture, and not soil temperature, was a controlling factor. Total soil CO2 loss was huge and indicates that the adoption of reduced tillage would considerably decrease soil carbon dioxide emission in our region, particularly during the summer season and when growers leave large amounts of crop residues on the soil surface. Although it is known that crop residues are important for restoring soil carbon, our result indicates that an amount equivalent to approximately 30% of annual crop carbon residues could be transferred to the atmosphere, in a period of 4 weeks only, when conventional tillage is applied on no-tilled soils. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It was evaluated the energetic efficiency and operational parameters of a windrowing and prismatic baling, both from CASE NEW HOLLAND® operations in sugarcane vegetal residues (green leaves, dry leaves and tops) picked mechanically in green cane. The area belongs to COSTA PINTO MILL (COSAN® Group) which was harvested mechanically by combines in the State of Sao Paulo, Brazil. The geographic location of the area is: Latitude 22°40'30S, Longitude 47°36'38W and Altitude of 605m. The variety was RB 82-5336, planted in 1.40m row spacing, with 78t.ha-1 yield. The vegetal residues analysis obtained 69.93% of leaves, 21.44% of stalks fractions, 2.27% of tops and 6.36% of total strange matter. The vegetal residues values were: gross heat of 18.43MJ.kg-1, low heat of 17.00MJ.kg'1 and useful heat of 12.94MJ.kg-1. The vegetal residues average energetic potential was 342.48GJ.ha-1. The treatments were simple, double and triple windrowing. The use of the rake and prismatic baler to pick up the residues was viable. The simple windrowing treatment presented the best results: effective capacity of 83.06t.ha-1, fuel consumption of 0.18L.t -1 and 99.95% of positive energetic efficiency. The bales obtained in the treatment of triple windrowing presented the largest specific mass average of 221.11kg.m-3. The soil amount in the bales increased with successive windrowing. The baling operation in the triple windrowing treatment obtained better results, presenting the effective capacities of 20.29t.h -1 and 1.45ha.h-1 and fuel consumption of for baled in 1.37L.t-1. The high total energetic efficiency of 99.53% indicates that is technically viable the withdrawal of the vegetal residues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brazil produced in 2002/03 season 317.87×106tons of sugar cane stalks and 36.88×106tons of vegetal residues (green leaves, dry leaves and tops) in a planted area of 4.61×106 hectares (ha). These residues have a useful heat of 3,613.14Mcal.t-1. Currently most of this biomass is burned as a pre-harvest practice. The doubt persists in the system type that it must be adopted to pick up, load, transport and unload this biomass at the sugar mill boilers. This study analyzed 22 variables related to operational costs and physical characteristics of these residues in a field situation using a JOHN DEERE® 6850 forage harvester with two different treatments: T1 and T2 (two types of rakes) with 6 repetitions each one. The geographic location of the studied area that belongs to COSTA PINTO MILL (COSAN® Group) is: Latitude 22°40'30S and Longitude 47°36'38W. The adopted methodology was proposed by Ripoli et al. (2002). The obtained results at a 5% level of significance showed that both treatments did not differed significantly between them. Some of the results were, where EBP stands for Oil Equivalent Barrel: Windrowing (T1=US$0.17.EBP-1 and US$9.59.ha-1, T2=US$0.08.EBP-1 and US$4.27.ha-1); Pick up (T1=US$1.31.EBP-1 and US$44.29.ha-1, T2 =US$1.37.EBP-1 and US$48.36.ha-1); Transportation (T1=US$1.27.EBP-1 and US$14,30.ha -1, T2=US$1.33.EBP-1 and US$14,80.ha -1), Unloading at the sugar mill (T1=US$0.30.EBP-1 and US$3.39.ha-1, T2=US$0.32.EBP-1 and US$3.51.ha-1); Total (T1=US$3.05.EBP-1 and US$71.57.ha-1, T2=US$3.10.EBP-1 and US$70.94.ha-1). Confronting the obtained data with the ones in the bibliography, this system revealed itself more expensive than the baling system or the integral harvest system using combines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sugar cane crop is one of the main products in Brazil and according to several authors can generate, besides the industrialized stalks, an amount of crop residues from the order of 15 to 30 % in weight of the aerial part of the plants, depending on the field conditions. The sugar cane area in Brazil is around 5.5×106 hectares, with an amount of 400.106 tons of stalks, with stalks yield of 72 tons.ha-1. This study took place in a sugar cane plot (Latitude 22°46'S, Longitude 47°23'W and 600m of altitude) with 3% of slope, located in São Paulo State. The sugar cane variety was SP 80-1816, in its forth cut, 11 months old and with a planted row spacing of 1.40 m. By other side, several sugar mills are bringing the crop residue to their patio to produce energy with the bagasse. One choice is to bring the crop residue at the same moment with the stalks, avoiding the next operation of baling it. The objective of this study was to analyze some operational parameters of two different sugar cane harvesters under the same field conditions, which was divided in four treatments: T1 = CAMECO CHT2500B operating normally; T2 = CAMECO CHT2500B operating without the cleaning system; T3 = CASE 7700 operating normally; T4 = CASE 7700 operating without the cleaning system. The results obtained were: Table presented CEB = Gross effective capacity; CEL = Net effective capacity. The conclusion is that under normal operation the CASE harvester worked better then CAMECO in the parameters CEL stalks and Manipulation efficiency. And without the cleaning system operating CASE also worked better in the parameters of CEB raw material, CEB stalks, CEL raw material and CEL stalks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sugar cane crop according to several authors can generate, besides the industrialized stalks, an amount of crop residues from the order of 15 to 30% in weight of the aerial part of the plants, depending on the field conditions. The sugar cane area in Brazil is around 5.5×106 hectares, with an amount of 400.106 tons of stalks, with stalks yield of 72 tons.ha-1 (Unica, 2005). This study took place in a sugar cane plot (Latitude 22°46'S, Longitude 47°23'W and 600m of altitude) with 3% of slope, located in São Paulo State. The sugar cane variety was SP 80-1816, in its forth cut, 11 months old and with a planted row spacing of 1.40m. By other side, several sugar mills are bringing the crop residue to their patio to produce energy with the bagasse. One way for that is the baling operation to bring the crop residue at the sugar mill. Some fundamental variables were obtained to define the best set of machines to work with in sugar cane crop residue removal in the baling system among the studied ones, some of the variables were: Soil Index (T1 = 0.83%, T2 = 0.46%, T3 = 0.65%, T4 = 0.57%); Energy Efficiency (T1 = 82.48%, T2 = 83.88%, T3 = 82.83% and T4 = 82.97%) of the system and Effective Cost for Equivalent Energy in US$.EBP-1 (T1 = 11.10, T2= 10.46, T3 = 11.47 and T4 = 10.57) of the baled trash delivered at the sugar mill.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major strategic goal in making ethanol from lignocellulosic biomass a cost-competitive liquid transport fuel is to reduce the cost of production of cellulolytic enzymes that hydrolyse lignocellulosic substrates to fermentable sugars. Current production systems for these enzymes, namely microbes, are not economic. One way to substantially reduce production costs is to express cellulolytic enzymes in plants at levels that are high enough to hydrolyse lignocellulosic biomass. Sugar cane fibre (bagasse) is the most promising lignocellulosic feedstock for conversion to ethanol in the tropics and subtropics. Cellulolytic enzyme production in sugar cane will have a substantial impact on the economics of lignocellulosic ethanol production from bagasse. We therefore generated transgenic sugar cane accumulating three cellulolytic enzymes, fungal cellobiohydrolase I (CBH I), CBH II and bacterial endoglucanase (EG), in leaves using the maize PepC promoter as an alternative to maize Ubi1 for controlling transgene expression. Different subcellular targeting signals were shown to have a substantial impact on the accumulation of these enzymes; the CBHs and EG accumulated to higher levels when fused to a vacuolar-sorting determinant than to an endoplasmic reticulum-retention signal, while EG was produced in the largest amounts when fused to a chloroplast-targeting signal. These results are the first demonstration of the expression and accumulation of recombinant CBH I, CBH II and EG in sugar cane and represent a significant first step towards the optimization of cellulolytic enzyme expression in sugar cane for the economic production of lignocellulosic ethanol.