959 resultados para redes neuronales artificiales
Resumo:
Resumen: Se realiza una revisión sobre los antecedentes de las Redes Neuronales Artificiales (RNA) como método de análisis de bases de datos medioambientales, aplicado en las diversas áreas de la Ingeniería Ambiental en general y de Impacto Ambiental en particular. Se describe como ejemplo, la aplicación de RNA en los algoritmos de inversión de datos obtenidos por sensado remoto satelital, para la medición de variables geofísicas
Resumo:
Resumen: En el marco de la integración de etapas en procesos de producción industrial en serie, se identifican, clasifican y caracterizan las variables que permiten modelizar dicho proceso, como estrategia con vistas a su optimización. El estudio se aplica en el ámbito de la industria metalúrgica, a partir de los datos de un conjunto de empresas de la región centro y sur de Santa Fe. La estructura secuencial de un proceso industrial hace que cualquier falla en una etapa cause demoras o reducción de calidad en el producto final obtenido. Como herramienta integradora de análisis, se plantea la implementación de un sistema de redes neuronales artificiales.
Resumo:
[ES] El catalogar a un determinado bien o servicio como una de las «extensiones de los sentidos y las funciones humanas de la vista, el oído y el tacto», muestra la importancia del papel que desempeñan en nuestras vidas, muestra el desarrollo que alcanzaron impulsadas por las mismas necesidades de los seres humanos, muestra un mercado dinámico e importante. El servicio de telefonía móvil o celular es el desencadenador de estas expresiones y además tema de comentario, investigación y preocupación de comunidades científicas y organismos internacionales como el World Economic Forum de Davos.
Resumo:
El objeto del presente trabajo, titulado “Aplicación de redes neuronales artificiales para la caracterización del error en trayectorias circulares por WEDM”, es el estudio y posterior optimización del error en trayectorias circulares mecanizadas mediante electroerosión por hilo. Se pretende desarrollar un modelo predictivo de dicho error a través de la implementación de una Red Neuronal Artificial (RNA), que deberá ser alimentada con resultados empíricos resultantes de una batería de ensayos. El modelo desarrollado permitirá conocer a priori los errores que se producirán al cortar formas circulares en distintos espesores y con distintos radios sin necesidad de recurrir a costosas baterías de ensayos.
Resumo:
Tesis (Maestro en Ciencias de la Administración con Especialidad en Sistemas) UANL, 1998
Resumo:
Tesis (Doctor en Ciencias con orientación en Procesos Sustentables) UANL, 2013.
Resumo:
Resumen tomado de la publicación
Resumo:
En las instituciones financieras, una deficiente gestión del riesgo de liquidez puede ocasionar pérdidas financieras, ya sea por: intereses excesivos de créditos con otras instituciones, venta de activos con precios inferiores al valor del mercado, pérdida de oportunidades de negocios, pérdida de confianza con el depositante e incluso hasta la quiebra de la entidad. Es por esta razón, que el monitoreo de la liquidez se vuelve indispensable para el correcto funcionamiento de un banco, y se motiva al desarrollo de nuevas metodologías para su cuantificación. Si bien la gestión del riesgo de liquidez depende de cada institución bancaria y de su estructura en activos y pasivos, esta investigación se concentra en el análisis de la disminución del pasivo (depósitos) y/o el incremento del activo (cartera) y su afectación a los niveles de liquidez. Con este antecedente, para determinar la posición futura de liquidez de la institución investigada, se analiza las necesidades de fondos (obtenidas con la proyección de los depósitos) y la fuente de recursos (proyección de la cartera de créditos), permitiendo determinar superávits o déficits futuros de liquidez. En realidad el planteamiento es un monitoreo de la liquidez con un vista hacia el futuro, facilitando la toma de decisiones para mantener y controlar el nivel de liquidez requerido por la institución. Para cumplir con el objetivo de predicción, se pone a prueba una metodología alternativa para la proyección de series temporales, la cual combina los resultados de los modelos ARIMA y Redes Neuronales Artificiales. Con el modelo ARIMA se estima la relación lineal entre los rezagos propios de la serie, mientras que con las Redes Neuronales Artificiales se estima el componente no lineal que la estimación ARIMA no pudo captar. Los resultados son comparados con los obtenidos por las dos metodologías por separado. Se concluye que el modelo híbrido propuesto tiene mayor exactitud al estimar ambas series temporales.
Resumo:
[ES]El spam, o correo no deseado enviado masivamente, es una amenaza que afecta al correo electrónico y otros medios de comunicación telemática. Su alto volumen de circulación genera pérdidas temporales y económicas considerables. Se presenta una solución a este problema: un sistema inteligente híbrido de filtrado antispam, basado en redes neuronales artificiales (RNA) no supervisadas. Consta de una etapa de preprocesado y de otra de procesado, basadas en distintos modelos de computación: programada (con 2 fases: manual y computacional) y neuronal (mediante mapas autoorganizados de Kohonen, SOM), respectivamente. Este sistema ha sido optimizado usando, como cuerpo de datos, ham de “Enron Email” y spam de dos fuentes diferentes. Se analiza la calidad y el rendimiento del mismo mediante diferentes métricas.
Resumo:
En los últimos años, estamos siendo testigos de la alta implantación en la sociedad de dispositivos de comunicación. Lo que hace años estaba reservado a un público reducido, con claras necesidades en comunicación, se ha trasladado al público general, dado la amplia variedad de servicios que sobre los nuevos medios de comunicación se han desarrollado. De hecho, el mayor tráfico de datos en la actualidad no se produce al hilo de necesidades de máxima importancia, sino como producto de nuevos hábitos cotidianos. En este contexto de renovación tecnológica constante en busca de la eficiencia, las antenas reflectoras reflectarray (o, simplemente, los reflectarrays, RAs, [1]) se presentan como una opción competitiva contra los reflectores parabólicos metálicos. En su versión más simple, una antena reflectarray se trata de una estructura compuesta de un elemento alimentador radiante, como puede ser una bocina, y de una superficie plana, consistente en multitud de elementos individuales dispuestos en una rejilla periódica. Sobre esta superficie plana, los frentes de onda provenientes del alimentador son reflejados formando frentes de ondas planas, de una manera análoga a como lo hace un reflector parabólico. A partir de la configuración inicial, y centrándose en el principio de funcionamiento, se ha ido modificando el tipo de elemento RA empleado, consiguiendo RA cada vez más operativos. Es, sobre todo, con el nacimiento de la tecnología impresa cuando las antenas RAs vuelven a cobrar interés. Aunque el uso de tecnología impresa supuso un gran impulso en los RAs, también abrió otros desafíos en lo que al diseño de ellos se refiere. Desde el punto de vista del análisis, es común suponer que el elemento RA se encuentra en un ambiente infinitamente periódico, de forma que se puedan aplicar las condiciones de contorno de Floquet (suposición de periodicidad local). Desde un punto de vista funcional, en general, los elementos RA de tecnología impresa presentan un ancho de banda reducido, que condiciona el ancho de banda del RA completo. Entre las soluciones aportadas, es comúnmente aceptado que las estructuras multicapa, con resonadores a distintas frecuencias cercanas, pueden mitigar en parte el problema del ancho de banda. Por ello, en la actualidad, los elementos RA más comunes están compuestos por varios elementos resonadores, cuyas dimensiones constituyen los parámetros de diseño libres. Es decir, en función de dichas dimensiones, el elemento RA tendrá un valor del coeficiente de reflexión u otro. Esto supone un aumento en la complejidad a la hora de analizar dicho elemento por los métodos numéricos conocidos, como el Método de los Momentos (MoM) o el Método de Elementos Finitos (FEM, por las siglas de su traducción inglesa Finite Element Method), que redundará en un mayor tiempo de cómputo en el análisis. Por otra parte, como se muestra en la Figura R.1, el diseño de un RA conlleva analizar multitud de veces el elemento RA considerado. En efecto, se trata de un método de diseño indirecto, en donde las dimensiones de los parámetros geométricos libres de cada elemento RA se obtienen de manera iterativa usando un optimizador. Se ve claro, entonces, que el aumento en tiempo de análisis del elemento RA repercute en gran medida en el tiempo de diseño total, por lo que una reducción en el tiempo de análisis del elemento RA podría ser muy beneficioso. Uno de los métodos para conseguir reducir el tiempo de diseño de un RA, que se puede encontrar en la literatura, es emplear un modelo de la respuesta del elemento RA en función de los parámetros libres. La cuestión que aflora es cuál es la herramienta idónea para modelar la respuesta del elemento RA. En los últimos años se han propuestos varias formas. La primera de ellas consistía en encontrar un equivalente circuital. Esta aproximación está bien extendida para otras estructuras EM, donde los equivalentes circuitales con componentes LC ofrecen respuestas muy precisas con respecto a las que ofrecen las estructuras EM en sí. A raíz del carácter no lineal de la respuesta, hay autores que han propuesto para el diseño de RAs la creación de tablas de datos (look up tables) que, para cada parámetro de diseño de interés (suele ser el desfase introducido por el elemento) guardan las dimensiones de los parámetros geométricos libres asociados. De esta forma, consiguen un diseño rápido, pero poco versátil, ya que la tabla ofrece un único valor para cada entrada, por lo que es difícil jugar con más de una restricción de diseño. Más recientemente, se está comenzando a utilizar, para la caracterización de estructuras EM, unos sistemas llamados Redes Neuronales Artificiales (ANN, por sus siglas en inglés Artificial Neural Network). El uso fundamental de los mismos en EM es el de servir como interpoladores no lineales. Se trata de sistemas que admiten múltiples parámetros de entradas y múltiples parámetros de salida. Antes de poder ser usados como interpoladores, deben ser entrenados. Para ello, necesitan de un conjunto de pares de los parámetros de entrada a la red, con los valores de las salidas asociados. Algunos usos en electromagnetismo de las ANNs que se pueden encontrar en la literatura son: el modelado de filtros; la caracterización de dispositivos activos; la obtención de modelos que aceleran los algoritmos que calculan la dirección de llegada en antenas de radar; o el diseño de arrays de antenas. Volviendo al modelado de elementos RA, en este trabajo haremos uso de las ANNs para caracterizar distintos tipos de elementos RA. A lo largo de estos últimos años, se ha considerado esta posibilidad como una de las más prometedoras. De hecho, podemos encontrar algunas pocas referencias al respecto, varias de las cuales han sido publicadas por distintos autores durante la elaboración del trabajo recogido en esta Tesis. Como veremos, los resultados que vamos a presentar aportan novedades con respecto a la citada literatura. Particularmente, en este trabajo se ha realizado la caracterización de un elemento RA de tres capas, considerando hasta 9 parámetros de entrada (seis parámetros geométricos, las dos coordenadas del ángulo de incidencia, y la frecuencia) y 4 parámetros de salida complejos (los coeficientes de reflexión para dos polarizaciones ortogonales lineales). Haciendo uso de esta caracterización en el flujo de diseño de RAs, se ha realizado el análisis y el diseño de varias antenas RA con restricciones de diseño de comunicaciones espaciales. Los resultados fueron exitosos comparados con los resultados obtenidos por los métodos tradicionales. De manera puntualizada, podríamos resumir las aportaciones que se verán en esta Tesis como: Caracterización de distintos elementos RA mediante ANNs basadas en el Perceptrón Multicapa (MLP). En concreto, se ha realizado con éxito la caracterización de un elemento RA de parche acoplado a línea de retardo a través de apertura; la caracterización de un elemento RA basado en dipolos sobre substratos de distintas características eléctricas en el rango de centenas de GHz; y la caracterización de un elemento RA basado en 3 parches apilados, con 9 parámetros libres en su caracterización. Uso del FEM, de la técnica de segmentación en subdominios y de la generación y manipulación de accesos MAM para el análisis y la caracterización de elementos RA mediante ANNs. Desarrollo de una nueva técnica de obtención de muestras, para el caso de estructura multicapa cuyo estudio EM se pueda dividir en dos pasos: estudio de cada capa y conexión de capas. De esta forma, se ha podido reducir en varios órdenes de magnitud el tiempo necesario para obtener el set de entrenamiento de las ANNs. Valoración del uso de distintos métodos de entrenamiento de segundo orden para el entrenamiento de redes ANN MLP, en la caracterización de elementos RA. Desarrollo de una nueva técnica para realizar el entrenamiento de redes ANNs basadas en el MLP, denominada como Entrenamiento en Cascada. Dado el alto número de parámetros a caracterizar, era difícil conseguir una red que, partiendo del número de entradas deseado, proporcionara convergencia con precisión suficiente. Con el algoritmo propuesto y probado en esta Tesis, se consiguió entrenar redes de 8 parámetros de entradas (el noveno parámetro, la frecuencia, correspondía a redes diferentes para cada valor) con gran precisión. Desarrollo de un método adaptativo para mejorar la precisión de las ANNs en el análisis de antenas RA. Este método, basado en re-entrenar las ANNs para sub rangos de los parámetros de entrada en donde el error es mayor, aporta una precisión mayor, al mejorar el entrenamiento global de las ANNs, en un tiempo aceptable, ya que solo se incluyen nuevas muestras en torno a los valores donde el error es mayor. Análisis de antena RA completa, con cobertura según especificaciones de la misión AMAZONAS (haz conformado, banda Ku), usando las caracterización el elemento RA obtenida mediante ANNs. La mejora en tiempo de análisis conseguida con respecto al uso del MoM está en un factor 102, con precisiones comparables. Diseño de antenas RA completas, con especificaciones de haz pincel y EuTELSAT (banda Ku). De nuevo, la mejora en tiempo de diseño conseguida están en torno a 102. De todos los puntos anteriores, son de destacar los dos últimos, que forman el objetivo principal de esta Tesis. Esto es, el uso de modelos rápidos de elementos RA mediante ANNs para el análisis y el diseño de antenas para comunicaciones por satélite.
Resumo:
El enriquecimiento del conocimiento sobre la Irradiancia Solar (IS) a nivel de superficie terrestre, así como su predicción, cobran gran interés para las Energías Renovables (ER) - Energía Solar (ES)-, y para distintas aplicaciones industriales o ecológicas. En el ámbito de las ER, el uso óptimo de la ES implica contar con datos de la IS en superficie que ayuden tanto, en la selección de emplazamientos para instalaciones de ES, como en su etapa de diseño (dimensionar la producción) y, finalmente, en su explotación. En este último caso, la observación y la predicción es útil para el mercado energético, la planificación y gestión de la energía (generadoras y operadoras del sistema eléctrico), especialmente en los nuevos contextos de las redes inteligentes de transporte. A pesar de la importancia estratégica de contar con datos de la IS, especialmente los observados por sensores de IS en superficie (los que mejor captan esta variable), estos no siempre están disponibles para los lugares de interés ni con la resolución espacial y temporal deseada. Esta limitación se une a la necesidad de disponer de predicciones a corto plazo de la IS que ayuden a la planificación y gestión de la energía. Se ha indagado y caracterizado las Redes de Estaciones Meteorológicas (REM) existentes en España que publican en internet sus observaciones, focalizando en la IS. Se han identificado 24 REM (16 gubernamentales y 8 redes voluntarios) que aglutinan 3492 estaciones, convirtiéndose éstas en las fuentes de datos meteorológicos utilizados en la tesis. Se han investigado cinco técnicas de estimación espacial de la IS en intervalos de 15 minutos para el territorio peninsular (3 técnicas geoestadísticas, una determinística y el método HelioSat2 basado en imágenes satelitales) con distintas configuraciones espaciales. Cuando el área de estudio tiene una adecuada densidad de observaciones, el mejor método identificado para estimar la IS es el Kriging con Regresión usando variables auxiliares -una de ellas la IS estimada a partir de imágenes satelitales-. De este modo es posible estimar espacialmente la IS más allá de los 25 km identificados en la bibliografía. En caso contrario, se corrobora la idoneidad de utilizar estimaciones a partir de sensores remotos cuando la densidad de observaciones no es adecuada. Se ha experimentado con el modelado de Redes Neuronales Artificiales (RNA) para la predicción a corto plazo de la IS utilizando observaciones próximas (componentes espaciales) en sus entradas y, los resultados son prometedores. Así los niveles de errores disminuyen bajo las siguientes condiciones: (1) cuando el horizonte temporal de predicción es inferior o igual a 3 horas, las estaciones vecinas que se incluyen en el modelo deben encentrarse a una distancia máxima aproximada de 55 km. Esto permite concluir que las RNA son capaces de aprender cómo afectan las condiciones meteorológicas vecinas a la predicción de la IS. ABSTRACT ABSTRACT The enrichment of knowledge about the Solar Irradiance (SI) at Earth's surface and its prediction, have a high interest for Renewable Energy (RE) - Solar Energy (SE) - and for various industrial and environmental applications. In the field of the RE, the optimal use of the SE involves having SI surface to help in the selection of sites for facilities ES, in the design stage (sizing energy production), and finally on their production. In the latter case, the observation and prediction is useful for the market, planning and management of the energy (generators and electrical system operators), especially in new contexts of smart transport networks (smartgrid). Despite the strategic importance of SI data, especially those observed by sensors of SI at surface (the ones that best measure this environmental variable), these are not always available to the sights and the spatial and temporal resolution desired. This limitation is bound to the need for short-term predictions of the SI to help planning and energy management. It has been investigated and characterized existing Networks of Weather Stations (NWS) in Spain that share its observations online, focusing on SI. 24 NWS have been identified (16 government and 8 volunteer networks) that implies 3492 stations, turning it into the sources of meteorological data used in the thesis. We have investigated five technical of spatial estimation of SI in 15 minutes to the mainland (3 geostatistical techniques and HelioSat2 a deterministic method based on satellite images) with different spatial configurations. When the study area has an adequate density of observations we identified the best method to estimate the SI is the regression kriging with auxiliary variables (one of them is the SI estimated from satellite images. Thus it is possible to spatially estimate the SI beyond the 25 km identified in the literature. Otherwise, when the density of observations is inadequate the appropriateness is using the estimates values from remote sensing. It has been experimented with Artificial Neural Networks (ANN) modeling for predicting the short-term future of the SI using observations from neighbor’s weather stations (spatial components) in their inputs, and the results are promising. The error levels decrease under the following conditions: (1) when the prediction horizon is less or equal than 3 hours the best models are the ones that include data from the neighboring stations (at a maximum distance of 55 km). It is concluded that the ANN is able to learn how weather conditions affect neighboring prediction of IS at such Spatio-temporal horizons.
Resumo:
El correcto pronóstico en el ámbito de la logística de transportes es de vital importancia para una adecuada planificación de medios y recursos, así como de su optimización. Hasta la fecha los estudios sobre planificación portuaria se basan principalmente en modelos empíricos; que se han utilizado para planificar nuevas terminales y desarrollar planes directores cuando no se dispone de datos iniciales, analíticos; más relacionados con la teoría de colas y tiempos de espera con formulaciones matemáticas complejas y necesitando simplificaciones de las mismas para hacer manejable y práctico el modelo o de simulación; que requieren de una inversión significativa como para poder obtener resultados aceptables invirtiendo en programas y desarrollos complejos. La Minería de Datos (MD) es un área moderna interdisciplinaria que engloba a aquellas técnicas que operan de forma automática (requieren de la mínima intervención humana) y, además, son eficientes para trabajar con las grandes cantidades de información disponible en las bases de datos de numerosos problemas prácticos. La aplicación práctica de estas disciplinas se extiende a numerosos ámbitos comerciales y de investigación en problemas de predicción, clasificación o diagnosis. Entre las diferentes técnicas disponibles en minería de datos las redes neuronales artificiales (RNA) y las redes probabilísticas o redes bayesianas (RB) permiten modelizar de forma conjunta toda la información relevante para un problema dado. En el presente trabajo se han analizado dos aplicaciones de estos casos al ámbito portuario y en concreto a contenedores. En la Tesis Doctoral se desarrollan las RNA como herramienta para obtener previsiones de tráfico y de recursos a futuro de diferentes puertos, a partir de variables de explotación, obteniéndose valores continuos. Para el caso de las redes bayesianas (RB), se realiza un trabajo similar que para el caso de las RNA, obteniéndose valores discretos (un intervalo). El principal resultado que se obtiene es la posibilidad de utilizar tanto las RNA como las RB para la estimación a futuro de parámetros físicos, así como la relación entre los mismos en una terminal para una correcta asignación de los medios a utilizar y por tanto aumentar la eficiencia productiva de la terminal. Como paso final se realiza un estudio de complementariedad de ambos modelos a corto plazo, donde se puede comprobar la buena aceptación de los resultados obtenidos. Por tanto, se puede concluir que estos métodos de predicción pueden ser de gran ayuda a la planificación portuaria. The correct assets’ forecast in the field of transportation logistics is a matter of vital importance for a suitable planning and optimization of the necessary means and resources. Up to this date, ports planning studies were basically using empirical models to deal with new terminals planning or master plans development when no initial data are available; analytical models, more connected to the queuing theory and the waiting times, and very complicated mathematical formulations requiring significant simplifications to acquire a practical and easy to handle model; or simulation models, that require a significant investment in computer codes and complex developments to produce acceptable results. The Data Mining (DM) is a modern interdisciplinary field that include those techniques that operate automatically (almost no human intervention is required) and are highly efficient when dealing with practical problems characterized by huge data bases containing significant amount of information. These disciplines’ practical application extends to many commercial or research fields, dealing with forecast, classification or diagnosis problems. Among the different techniques of the Data Mining, the Artificial Neuronal Networks (ANN) and the probabilistic – or Bayesian – networks (BN) allow the joint modeling of all the relevant information for a given problem. This PhD work analyses their application to two practical cases in the ports field, concretely to container terminals. This PhD work details how the ANN have been developed as a tool to produce traffic and resources forecasts for several ports, based on exploitation variables to obtain continuous values. For the Bayesian networks case (BN), a similar development has been carried out, obtaining discreet values (an interval). The main finding is the possibility to use ANN and BN to estimate future needs of the port’s or terminal’s physical parameters, as well as the relationship between them within a specific terminal, that allow a correct assignment of the necessary means and, thus, to increase the terminal’s productive efficiency. The final step is a short term complementarily study of both models, carried out in order to verify the obtained results. It can thus be stated that these prediction methods can be a very useful tool in ports’ planning.
Resumo:
En este trabajo se describe la utilización de Redes Neuronales Artificiales (RNAs) para pronóstico de demanda. Se propone además un método para definir los parámetros de las RNAs de una manera integrada y repetible y se prueba con una aplicación real.
Resumo:
Esta investigación utiliza una red neuronal multicapa para relacionar el Índice General de Bolsa de Valores de Colombia (IGBC) con fundamentales macroeconómicos y variables financieras. Proponemos dos modelos: un modelo APT (fundamentales macroeconómicos) y un modelo APT modificado (fundamentales macroeconómicos + indicador de las bolsas del mundo); de acuerdo a nuestro análisis el APT tradicional se ajusta mejor para predecir el mercado de valores Colombiano. Los resultados confirman que las redes neuronales artificiales (ANN) son más efectivas que los modelos estadísticos tradicionales por su capacidad explicativa y precisión.