56 resultados para phenylpropanoid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Mango fruits contain a broad spectrum of phenolic compounds which impart potential health benefits; their biosynthesis is catalysed by enzymes in the phenylpropanoid-flavonoid (PF) pathway. The aim of this study was to reveal the variability in genes involved in the PF pathway in three different mango varieties Mangifera indica L., a member of the family Anacardiaceae: Kensington Pride (KP), Irwin (IW) and Nam Doc Mai (NDM) and to determine associations with gene expression and mango flavonoid profiles. Results: A close evolutionary relationship between mango genes and those from the woody species poplar of the Salicaceae family (Populus trichocarpa) and grape of the Vitaceae family (Vitis vinifera), was revealed through phylogenetic analysis of PF pathway genes. We discovered 145 SNPs in total within coding sequences with an average frequency of one SNP every 316bp. Variety IW had the highest SNP frequency (one SNP every 258bp) while KP and NDM had similar frequencies (one SNP every 369bp and 360bp, respectively). The position in the PF pathway appeared to influence the extent of genetic diversity of the encoded enzymes. The entry point enzymes phenylalanine lyase (PAL), cinnamate 4-mono-oxygenase (C4H) and chalcone synthase (CHS) had low levels of SNP diversity in their coding sequences, whereas anthocyanidin reductase (ANR) showed the highest SNP frequency followed by flavonoid 3'-hydroxylase (F3'H). Quantitative PCR revealed characteristic patterns of gene expression that differed between mango peel and flesh, and between varieties. Conclusions: The combination of mango expressed sequence tags and availability of well-established reference PF biosynthetic genes from other plant species allowed the identification of coding sequences of genes that may lead to the formation of important flavonoid compounds in mango fruits and facilitated characterisation of single nucleotide polymorphisms between varieties. We discovered an association between the extent of sequence variation and position in the pathway for up-stream genes. The high expression of PAL, C4H and CHS genes in mango peel compared to flesh is associated with high amounts of total phenolic contents in peels, which suggest that these genes have an influence on total flavonoid levels in mango fruit peel and flesh. In addition, the particularly high expression levels of ANR in KP and NDM peels compared to IW peel and the significant accumulation of its product epicatechin gallate (ECG) in those extracts reflects the rate-limiting role of ANR on ECG biosynthesis in mango. © 2015 Hoang et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenylpropanoid glycosides, 1 '-O-benzyl-alpha-(L)-rhamnopyranosyl-(1 ''-> 6 ')-beta-(D)-glucopyranoside (1) and alpha-(L)-Xylopyranosyl(4 '', 2 ')-(3-O-beta-(D)-glucopyranosyl)-1 '-O-E-caffeoyl-beta-(D)-glucopyranoside (2), together with the known derivatives, 1,6-di-O-caffeoyl- beta-(D)-glucopyrano side (3), 1-O-(E)-caffeoyl-beta-(D)-glucopyranoside (4) and 1-O-(E)-feruloyl-beta-(D)-glucopyranoside (5), were isolated from leaves of Coussarea hydrangeifolia. Their structures were determined by IR, HRESIMS, and I D and 2D NMR experiments, and their antioxidant activities, evaluated by assaying the free radical scavenging capacity using the DPPH (1,1-diphenyl-2-picrylhydrazyl) radical as substrate. The antioxidant activities of 3 and 4 (IC50 values of 15.0 and 19.2 mu M, respectively) were comparable to that of the standard positive control caffeic acid, whilst 2 and 5 were only weakly active and 1 was inactive. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A collection of 8,000 Arabidopsis thaliana plants carrying 48,000 insertions of the maize transposable element En-1 has been generated. This population was used for reverse genetic analyses to identify insertions in individual gene loci. By using a PCR-based screening protocol, insertions were found in 55 genes. En-1 showed no preference for transcribed or untranscribed regions nor for a particular orientation relative to the gene of interest. In several cases, En-1 was inserted within a few kilobases upstream or downstream of the gene. En-1 was mobilized from such positions into the respective gene to cause gene disruption. Knock-out alleles of genes involved in flavonoid biosynthesis were generated. One mutant line contained an En-1 insertion in the flavonol synthase gene (FLS) and showed drastically reduced levels of kaempferol. Allelism tests with other lines containing En-1 insertions in the flavanone 3-hydroxylase gene (F3H) demonstrated that TRANSPARENT TESTA 6 (TT6) encodes flavanone 3-hydroxylase. The f3h and fls null mutants complete the set of A. thaliana lines defective in early steps of the flavonoid pathway. These experiments demonstrate the efficiency of the screening method and gene disruption strategy used for assigning functions to genes defined only by sequence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piperonylic acid (PA) is a natural molecule bearing a methylenedioxy function that closely mimics the structure of trans-cinnamic acid. The CYP73A subfamily of plant P450s catalyzes trans-cinnamic acid 4-hydroxylation, the second step of the general phenylpropanoid pathway. We show that when incubated in vitro with yeast-expressed CYP73A1, PA behaves as a potent mechanism-based and quasi-irreversible inactivator of trans-cinnamate 4-hydroxylase. Inactivation requires NADPH, is time dependent and saturable (KI = 17 μm, kinact = 0.064 min−1), and results from the formation of a stable metabolite-P450 complex absorbing at 427 nm. The formation of this complex is reversible with substrate or other strong ligands of the enzyme. In plant microsomes PA seems to selectively inactivate the CYP73A P450 subpopulation. It does not form detectable complexes with other recombinant plant P450 enzymes. In vivo PA induces a sharp decrease in 4-coumaric acid concomitant to cinnamic acid accumulation in an elicited tobacco (Nicotiana tabacum) cell suspension. It also strongly decreases the formation of scopoletin in tobacco leaves infected with tobacco mosaic virus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lignin is a hydrophobic polymer that is synthesised in the secondary cell walls of all vascular plants. It enables water conduction through the stem, supports the upright growth habit and protects against invading pathogens. In addition, lignin hinders the utilisation of the cellulosic cell walls of plants in pulp and paper industry and as forage. Lignin precursors are synthesised in the cytoplasm through the phenylpropanoid pathway, transported into the cell wall and oxidised by peroxidases or laccases to phenoxy radicals that couple to form the lignin polymer. This study was conducted to characterise the lignin biosynthetic pathway in Norway spruce (Picea abies (L.) Karst.). We focused on the less well-known polymerisation stage, to identify the enzymes and the regulatory mechanisms that are involved. Available data for lignin biosynthesis in gymnosperms is scarce and, for example, the latest improvements in precursor biosynthesis have only been verified in herbaceous plants. Therefore, we also wanted to study in detail the roles of individual gene family members during developmental and stress-induced lignification, using EST sequencing and real-time RT-PCR. We used, as a model, a Norway spruce tissue culture line that produces extracellular lignin into the culture medium, and showed that lignin polymerisation in the tissue culture depends on peroxidase activity. We identified in the culture medium a significant NADH oxidase activity that could generate H2O2 for peroxidases. Two basic culture medium peroxidases were shown to have high affinity to coniferyl alcohol. Conservation of the putative substrate-binding amino acids was observed when the spruce peroxidase sequences were compared with other peroxidases with high affinity to coniferyl alcohol. We also used different peroxidase fractions to produce synthetic in vitro lignins from coniferyl alcohol; however, the linkage pattern of the suspension culture lignin could not be reproduced in vitro with the purified peroxidases, nor with the full complement of culture medium proteins. This emphasised the importance of the precursor radical concentration in the reaction zone, which is controlled by the cells through the secretion of both the lignin precursors and the oxidative enzymes to the apoplast. In addition, we identified basic peroxidases that were reversibly bound to the lignin precipitate. They could be involved, for example, in the oxidation of polymeric lignin, which is required for polymer growth. The dibenzodioxocin substructure was used as a marker for polymer oxidation in the in vitro polymerisation studies, as it is a typical substructure in wood lignin and in the suspension culture lignin. Using immunolocalisation, we found the structure mainly in the S2+S3 layers of the secondary cell walls of Norway spruce tracheids. The structure was primarily formed during the late phases of lignification. Contrary to the earlier assumptions, it appears to be a terminal structure in the lignin macromolecule. Most lignin biosynthetic enzymes are encoded for by several genes, all of which may not participate in lignin biosynthesis. In order to identify the gene family members that are responsible for developmental lignification, ESTs were sequenced from the lignin-forming tissue culture and developing xylem of spruce. Expression of the identified lignin biosynthetic genes was studied using real-time RT-PCR. Candidate genes for developmental lignification were identified by a coordinated, high expression of certain genes within the gene families in all lignin-forming tissues. However, such coordinated expression was not found for peroxidase genes. We also studied stress-induced lignification either during compression wood formation by bending the stems or after Heterobasidion annosum infection. Based on gene expression profiles, stress-induced monolignol biosynthesis appeared similar to the developmental process, and only single PAL and C3H genes were specifically up-regulated by stress. On the contrary, the up-regulated peroxidase genes differed between developmental and stress-induced lignification, indicating specific responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Candida-associated denture stomatitis is a frequent infectious disease. Treatment of this oral condition is difficult because failures and recurrences are common. The aim of this study was to test the in vitro antifungal activity of pure constituents of essentials oils. -- Methods: Eight terpenic derivatives (carvacrol, farnesol, geraniol, linalool, menthol, menthone, terpinen-4-ol, and aterpineol), a phenylpropanoid (eugenol), a phenethyl alcohol (tyrosol) and fluconazole were evaluated against 38 Candida isolated from denture-wearers and 10 collection Candida strains by the CLSI M27-A3 broth microdilution method. -- Results: Almost all the tested compounds showed antifungal activity with MIC ranges of 0.03-0.25% for eugenol and linalool, 0.03-0.12% for geraniol, 0.06-0.5% for menthol, a-terpineol and terpinen-4-ol, 0.03-0.5% for carvacrol, and 0.06-4% for menthone. These compounds, with the exception of farnesol, menthone and tyrosol, showed important in vitro activities against the fluconazole-resistant and susceptible-dose dependent Candida isolates. -- Conclusions: Carvacrol, eugenol, geraniol, linalool and terpinen-4-ol were very active in vitro against oral Candida isolates. Their fungistatic and fungicidal activities might convert them into promising alternatives for the topic treatment of oral candidiasis and denture stomatitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

水母雪莲(Saussurea medusa Maxim.)和新疆雪莲(Saussurea involucrata Karel. et Kir.)是我国珍稀的药用植物资源,具有清热解毒、止痉镇痛、敛伤、消肿及治疗热病、风湿等多种功效。雪莲的主要药用成份为紫丁香甙(Syringin)、芦丁(Rutin)、高车前素(Hispidulin)和Jaceosidin等苯基丙酸类(phenylpropanoid)和黄酮类(flavonoids)物质。最新的药理研究表明,上述物质还具有抗菌消炎、保肝降压、延缓衰老和抑制癌细胞增殖等重要的研发价值。 雪莲生境恶劣,生长缓慢,人工引种困难,加上长期掠夺性采挖,已使雪莲处于灭绝的边缘。为了保存国家珍稀植物品种,保护生态环境,满足临床上对雪莲药物的需求,本研究在雪莲组织培养的基础上,应用诱导子添加技术和毛状根培养技术对雪莲中具有重要药用价值的次生代谢物质进行调控,并对雪莲MYB类转录因子的功能进行了初步探索,为保护珍稀植物资源、维护生态环境、开发野生雪莲替代产品、缩短雪莲药用成份的生产周期奠定了基础。另外,分析了野生雪莲和雪莲培养物中主要生物活性成份的种类及含量,为今后雪莲药理药效研究及品质评价奠定了基础。 为了提高雪莲黄酮的产量,满足工业化生产的需要,在细胞培养水平上,通过添加茉莉酸甲酯(MJ),对雪莲黄酮类物质的代谢进行调控。研究了诱导子的添加时间、添加浓度对水母雪莲红色系悬浮细胞的生物量和总黄酮产量的影响。发现在细胞培养的指数期(第9天)添加5.0 µmol/L的MJ,可以使总黄酮产量提高2.4倍(1134.5 ± 63.86 mg/L),而雪莲细胞干重(dw)仅比对照提高23.8 %(20.4 ±0.27 g/L)。另外,细胞中苯丙氨酸裂解酶(PAL)的活性分析表明,MJ添加后PAL活性的增加与雪莲总黄酮含量增长之间存在相关性。 在器官培养水平上,对雪莲毛状根的诱导频率及其培养条件进行了研究。结果表明,选择发根农杆菌R1601侵染预培养2天的新疆雪莲根段外植体,毛状根的诱导效率可达到83 %。毛状根的冠瘿碱检测、PCR和Southern分析表明,Ri质粒中的T-DNA已整合到植物基因组中并稳定表达。以新疆雪莲毛状根为外植体,能够容易地获得再生芽。在含有1.0 mg/L 6-BA的MS固体培养基上,其再生频率高达91 ± 5.9 %,是其正常根的2.4倍。而水母雪莲在该培养条件下,仅有少量的畸形芽出现。进而对毛状根的培养条件进行初步研究,结果表明在无激素附加的MS液体培养基中,新疆雪莲的HR1601根系在一个培养周期内(32 天),其生物量能够达到接种量的16倍,而紫丁香甙含量(43.5 ± 1.13 mg/g dw)能够达到野生雪莲的83倍。从而显示了雪莲毛状根培养体系的优良特性。 在基因水平上,对雪莲黄酮类物质代谢调控的研究已经展开。玉米P基因编码的Myb类转录因子能够调节黄酮类物质代谢途径关键酶基因的表达。根据P基因的保守序列设计引物,从雪莲细胞培养物中获得了SmP基因。核酸序列分析表明,SmP基因与烟草中涉及苯丙素类物质代谢途径的LBM 1、LBM 3和MybAS 1基因具有较高的一致性,分别为66 %、60 %和61 %。因此为了研究雪莲SmP基因的功能,构建了正义表达载体,并与先前构建好的反义表达载体分别导入烟草,分析了转基因植株的形态特征及黄酮类物质的含量变化。其中,约有30 %转反义SmP基因的株系表现叶片皱缩、叶脉紊乱、主侧脉角度缩小、叶片、花瓣失去对称性以及花粉败育等性状。 另外,通过正交试验设计优化了雪莲提取工艺的条件,并对雪莲细胞提取物进行了分离纯化。正交试验设计结果表明,温度对雪莲黄酮提取效率的影响极为显著,而分批多次提取比一次性浸提,能够收到较好的提取效果。考虑到工业生产中的实际问题,推荐在60 ℃水浴条件下,采用50 %乙醇对雪莲样品连续浸提2次的方案。对雪莲提取物的纯化研究表明,雪莲成份复杂,仅依靠单一的分离手段,往往难以奏效。另外,野生雪莲及雪莲培养物中生物活性成份的比色法、HPLC(High Performance Liquid Chromatography)、LC-ESI-MS(Liquid Chromotagraphy Electrospray Ionization Mass Spectrometry)分析表明,传统的NaNO2-AlCl3 法测定雪莲总黄酮的含量,结果偏高,不利于雪莲黄酮的实验室研究分析与今后工业化生产的质量监控。而AlCl3 法的显色反应较为特异,今后有望取代NaNO2-AlCl3 法,作为雪莲类药材品质评价的标准。而HPLC-DAD结合LC-ESI-MS可以对雪莲中的主要生物活性成份进行较为准确的定性分析,从而解决了由于缺乏相应的雪莲化合物标准品而难以对雪莲中的成份进行定性定量分析及比较的难题。最后综合利用上述分析方法,对雪莲细胞培养物中的花素类物质进行了分析。结果表明,雪莲细胞中至少含有7种花色素类物质,分别为矢车菊素-3-O-葡萄糖甙及其衍生物、天竺葵素糖甙衍生物和芍药色素糖甙衍生物。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本论文由三章组成。第一章阐述了藏药水菖蒲的化学成分研究,共分离鉴定了39个化学成分,其中6个为新化合物。第二章报道了几种忍冬属植物的HPLC、HPLC-MS、GC分析以及抑菌活性、重金属含量测定结果。第三章概述了菖蒲属植物的研究进展。 第一章报道了水菖蒲(Acorus calamus L.)化学成分的分离纯化与结构鉴定。采用正、反相硅胶柱层析等分离方法,从水菖蒲的根中共分离出41个化合物,通过红外、质谱、核磁共振及X-ray单晶衍射等波谱方法和模拟计算方法鉴定了其中39个化合物的结构,主要为倍半萜、苯丙素、甾体类化合物。其中含有5个新的倍半萜类化合物和1系列新的甾体皂苷衍生物。经波谱分析将它们的结构鉴定为 1b, 7a(H)-cadinane-4a, 6a, 10a-triol (1), (2R,6R,7S,9S)-1(10), 4-cadinadiene-2, 9-diol (2), 1a, 5b-guaiane-10a-O-ethyl-4b, 6b-diol (7), 6b, 7b(H)-cadinane-1a, 4a, 10a-triol (13),(1R,4R,6S,10R)-1-hydroxy-7(11)-cadinen-5, 8-dione (14), 4′-O-正n碳酰基-3-O- β-D-葡萄糖基谷甾醇(n=14, 16, 18, 22) (15)。 第二章包括四个部分。第一部分报道了忍冬属三种植物40个样品的HPLC测定和对主要活性成分绿原酸的定量分析结果,以及运用HPLC-MS技术对色谱图中8个峰进行指认。在此基础上,考察了种植和采收多个因素对绿原酸含量的影响。第二部分报道了忍冬属三种植物27个样品的GC分析,根据样品的挥发性成分的保留时间对不同样品进行了定性比较,并考察了花期及海拔高度对植物挥发性成分的影响。第三、四部分分别阐述了灰毡毛忍冬和红腺忍冬的体外抑菌活性研究和重金属含量测定结果。 第三章全面系统地概述了菖蒲属植物的化学成分和药理活性研究进展。 This dissertation is composed by three chapters. The first chapter elaborates the phytochemical investigation of Acorus calamus L. Thirty-nine compounds including six new compounds were isolated and identified. The second chapter reports the research on genus Lonicera by HPLC, HPLC-MS and GC. Antifungal activity and heavy metals measurement of genus Lonicera were reported. The third chapter is a review about the research progress on the plant family of Acorus. The first chapter focuses on the isolation and identification of chemical constituents from Acorus calamus L.. Forty-one compounds were isolated from the root of Acorus calamus L. by repeat column chromatography over normal and reversed phase silica gel, the structure of thirty-nine compounds was identified by spectroscopic methods and computational methods, including IR, MS, NMR and X-ray. Those compounds mainly belonged to sesquiterpene, phenylpropanoid and steroid. Among them, five are new sesquiterpenes and one series are new steroid glycoside derivatives. Their structure were suggested as 1b, 7a(H)-cadinane-4a, 6a, 10a-triol (1), (2R,6R,7S,9S)-1(10), 4-cadinadiene-2, 9-diol (2), 1a, 5b-guaiane-10a-O-ethyl-4b, 6b- diol (7), 6b, 7b(H)-cadinane-1a, 4a, 10a-triol (13), (1R,4R,6S,10R)-1-hydroxy-7(11)- cadinen-5, 8-dione (14), 4′-O-carbonyl-3-O-β-D-glucosyl-sitosterol (carbonyl = tetradecanoyl, hexadecanoyl, octadecyl, docosanoyl) (15). The second chapter consists of four parts. The first part reports the HPLC analysis of forty samples of the genus Lonicera, and the quantitative investigation of chlorogenic acid in these samples by HPLC analysis. Relationship between the content of chlorogenic acid in different samples and their planting conditions and harvesting time were discussed. Furthermore, eight compounds were identified or tentatively characterized based on their mass spectra and UV spectra profiles. The second part is about qualitative analysis of the volatile constituent in twenty-seven samples of genus Lonicera by GC. The effect of planting altitude and harvesting time on the volatile constituent was also investigated. The third and fourth parts describe the antifungal activity and content of some kinds of heavy metals of L. macranthoides Hand.-Mazz. and L. hypoglauca Miq.. The third chaspter is a review about the research progress of the plant family of Acorus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

首次从野桂花(Osmanthus yunnanensis Fr. P. S. Green)地上部分95%乙醇提取物中通过色谱分离得到20个化合物, 其中化合物20为新化合物。基于波谱数据它们被鉴定为(E)-阿魏酸二十烷基酯(1)、β-谷甾醇(2)、羽扇豆醇(3)、齐墩果酸(4)、7-oxo-β-sitosterol(5)、乙酰齐墩果酸(6)、(6′-O-palmitoyl)-sitosterol 3-O-β-D-glucoside(7)、rotundioic acid(8)、地榆糖甙Ⅱ(9)、27-O-(E)-对羟基肉桂酰-28-齐墩果酸(10)、27-O-(Z)-对羟基肉桂酰-28-齐墩果酸(11)、hycandinic acid ester(12)、绿原酸丁酯(13)、4,5-二咖啡酰奎尼酸丁酯(14)、4,5-dihydroxyprenyl caffeate(15)、28-O-β-D-glucopyranosyl rotundioic acid (16)、4-(6-O-caffeoyl-β-D-glucopyranosyloxy)-5-hydroxyprenyl caffeate (aohada-glycoside C, 17)、 4-β-D-glucopyranosyloxy-5-hydroxy-prenyl caffeate (aohada-glycoside A, 18)、β-胡萝卜甙(19)以及3-[O-β-D-(6-O-咖啡酰吡喃葡萄糖)]-甲基-2-烯-γ-内酯 (20)。化合物13、14、15和17有较强的α-葡萄糖甙酶抑制活性。当浓度为1 mg/ml时,它们对α-葡萄糖甙酶的抑制分别为61.5%、95.5%、72.1%、62.6%,活性高于阿卡波糖。 综述了木犀属植物化学成分及1993年以来苯丙素甙类化合物活性研究进展。 Twenty compounds were isolated from the 95% ethanol extract of the aerial parts of Osmanthus yunnanensis Fr. P. S. Green by chromatography for the first time. On the basis of spectral data, they were identified as (E)-ferulic acid eicosyl ester (1), β-sitosterol (2), lupenol (3), oleanolic acid (4), 7-oxo-β-sitosterol (5), acetyloleanolic acid (6), (6′-O-palmitoyl)-sitosterol 3-O-β-D-glucoside (7), rotundioic acid (8), ziyu glycosideⅡ (9), 3β-hydroxy-27-p-(E)-coumaroyloxy-olean-12-en-28-oic acid (10), 3β-hydroxy-27-p-(Z)-coumaroyloxyolean-12-en-28-oic acid (11), hycandinic acid ester (12), chlorogenic acid butyl ester (13), 4,5-di-O-caffeoylquinic acid butyl ester (14), 4,5-dihydroxyprenyl caffeate (15), 28-O-β-D-glucopyranosyl rotundioic acid (16), 4-(6-O-caffeoyl-β-D-glucopyranosyloxy)-5-hydroxyprenyl caffeate (aohada- glycoside C, 17), 4-β-D-glucopyranosyloxy-5-hydroxyprenyl caffeate (aohada- glycoside A, 18), β-daucosterol(19) and 3-[O-β-D-(6-O-caffeoylglucopyranosyl)]- methyl-2-en-γ-lactone (20). Compound 20 is a new one. Compounds 13, 14, 15 and 17 inhibit α-glucosidase with corresponding inhibitory rate of 61.5%, 95.5%, 72.1% and 62.6% at a concentration of 1 mg/ml, higher than acarbose. The chemical studies on Osmanthus genus and bioactivities of phenylpropanoid glycosides were summarized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本学位论文由两部分共3章组成。第一部分分别报道2种藏药唐古特瑞香和大果大戟化学成分的研究成果,从2种药用植物共分离鉴定了60个不同的化合物,其中12个为新结构,特别有意义的是发现了2个具有同一新骨架的二萜化合物。第二部分概述了大戟科植物多环二萜的研究进展。 第一部分包括第1和2章。在这2章中分别报道了唐古特瑞香(Daphne tangutica Maxim)和大果大戟(Euphorbia wallichii Hook. f. Fl)化学成分的分离纯化与结构鉴定。实验采用正、反相硅胶柱层析、薄层制备及HPLC等分离方法,从唐古特瑞香的根皮中共分离出32个化合物,通过红外、质谱及核磁共振等波谱方法鉴定了其中的31个,结构类型分别属于瑞香二萜类、木脂素类、香豆素类、苯丙素类及甾体类,其中有三个新的瑞香二萜型化合物,经波谱分析将它们的结构分别鉴定为1,2a-二氢-20-棕榈酰瑞香毒素、1,2a-二氢-5b-羟基-6a,7a-环氧-树脂大戟醇-14-苯甲酸酯及1,2b-二氢-5b-羟基-6a,7a-环氧-树脂大戟醇-14-苯甲酸酯,另外还有13个已知化合物为首次从该植物中分离得到。从大果大戟的根部共分离出33个化合物,鉴定了其中的30个,其主要成分为种类丰富的二萜,包括巨大戟烷型、续随子烷型、对映-阿替生烷型、对映-贝壳杉烷型、对映-松香烷型、ent-trachylobane型、对映-异海松烷型及一新骨架五环二萜ent-wallichane型,另外还有香豆素、甾体、三萜和一些简单的小分子化合物。其中新化合物有9个,经波谱分析将它们的结构分别鉴定为5-O-(2E,4E,6E)-癸三烯酰基-3,20-O-二乙酰基巨大戟醇、5-O-(2E,4Z)-癸二烯酰基-3-O-乙酰基-20-去氧巨大戟醇、3-O-(2E,4Z)-癸二烯酰基-5b,6b-氧-交京大戟醇、7-苯甲酰氧基-3,5,15-三乙酰基-续随子醇、ent-trachylobane-3-one-17-oic-acid、3α-羟基-对映-阿替斯-16-烯-14-酮、3α,6-二羟基-对映-异海松-7-烯-2,15-二酮、wallichanol A 和 wallichanol B,其中,wallichanol A 和 wallichanol B属于一新骨架类型的五环二萜。除此以外,另有13个已知化合物为首次从该植物中分离得到。 第2部分即第3章,首次概述了大戟属植物中多环二萜的化学和药理研究进展。 This dissertation is composed by two parts. The first part reports the phytochemical investigation of two Tibetan medicine plants, Daphne tangutica Maxim and Euphorbia wallichii Hook. f. Fl. Sixty different compounds including ten new compounds and two novel diterpenoids possessing a new carbon skeleton were isolated and identified. The second part is a review about the progress of studies on the polycyclic diterpeniods of the plant family of Euphorbia. The first part consists two chapters, which expatiate on the isolation and identification of chemical constituents from D. tangutica and E. wallichii. Thirty-one compounds were isolated from the root barks of D. tangutica by methods of column chromatography (silica gel, including reversed phase), preparative TLC and HPLC, and their structure were identified as nine daphnane diterpenes, six lignans, nine cumarin derivatives, five phenylpropanoid derivatives, a steroids and a benzoate on the basis of spectroscopic methods including IR, MS and NMR. Among them, three are new diterpenes with skeleton of daphnane and the structure were determined as 1,a-dihydro-20-palimoyl-daphnetoxin, 1,2a-dihydro-5b- hydroxy-6a,7a-epoxy-resiniferonol-14-benzoate and 1,2b-dihydro-5b-hydroxy- 6a,7a-epoxy-resiniferonol-14-benzoate. In addition, thirteen known ones were isolated from this plant for the first time. Isolation of the roots of E. wallichii yielded thirty compounds, twenty-four of them were elucidated as diterpenoids, which belong to different skeleton types of ingenol, lathyrane, ent-atisane, ent-kaurane, ent-abietane, ent-trachylobane, ent-isopimarane and a new pentacyclic skeleton ent-wallichane respectively. The remains including a cumarine, a triterpenoid, a steroid and three compounds with small molecule. Nine new compounds were characterized as 5-O-deca-2E,4E,6E- trienoyl-3,20-O-diacetylingenol, 5-O-deca-2E,4Z-dienoyl-3-O-acetyl-20- deoxyingenol, 3-O-deca-2E,4Z-dienoyl-jolkinol-5b,6b-oxide, 7-benzoyl-3,5,15- triacetyl-7-hydroxylathyrol, ent-trachylobane-3-one-17-oic-acid, 3α-hydroxy-ent- atis-16-en-14-one, 3α,6-dihydroxy-ent-isopimarane-7-en-2,15-dione, wallichanol A and wallichanol B, respectively, by means of comprehensive spectroscopic analysis. Among them, wallichanol A and wallichanol B were two notable novel pentacyclic diterpenoids processing a new rearranged carbon skeleton. And more, thirteen ones were firstly reported from this plant. The third chapter summarizes the research development on chemistry and pharmacology of polycyclic diterpenes from the plant family of Euphorbia for the first time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

香豆素类物质是苯丙酸内酯(环酯)类化合物,绝大部分高等植物通过次生代谢途径都能合成。研究表明,香豆素类物质是花椒体内最重要的化感物质,系统研究香豆素类物质的作用机理有助于理解和最终解决花椒连作障碍。本文通过研究香豆素对几种植物种子特别是苜蓿种子萌发、苜蓿幼苗初级氮同化的影响,从生理生化角度揭示香豆素的作用方式,为花椒连作障碍的解决和化感作用机制的深入理解提供依据。主要研究结果如下:1. 研究了香豆素对6 种常见作物种子萌发的影响,并对一组数据采用4个不同的指标进行评价,对生物测定化感作用中存在的问题进行了讨论。结果发现1.0mM的香豆素对采用的6 种作物的种子萌发均表现出一定的化感作用,4 个指标的敏感程度依次为S (发芽速度)>AS(累积发芽速度)>CRG(发芽指数)>GT(最终发芽率)。种子萌发实验是化感作用研究中最重要、应用最广泛的生物测定方法之一,应根据不同的研究目的合理采用指标和实验方法。2. 采用培养皿试纸法进行种子萌发试验,研究了香豆素水溶液在苜蓿种子萌发过程中对其吸水、电导率及抗氧化保护酶活性的影响。结果表明,影响苜蓿种子发芽的香豆素浓度阀值为0.3mM。香豆素在1.0mM 的浓度下降低了苜蓿种子吸水阶段Ⅱ的吸水速度,使其外渗物质增多,电导率增大,并显著抑制了超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)的活性,同时种子体内丙二醛(MDA)的含量显著增大。高浓度香豆素破坏了膜的结构、影响了抗氧化保护酶的活性是香豆素降低苜蓿发芽率的原因之一,也可能是影响花椒-苜蓿间作的关键因素之一。3. 不同浓度(0、25 μM、50 μM、0.1 mM、1.0 mM)化感活性物质香豆素对10 日龄苜蓿幼苗初级氮同化的影响的结果表明25 µM~50 µM 的香豆素加快了苜蓿幼苗对硝态氮的吸收。高浓度的香豆素导致苜蓿根系和叶片内可溶性蛋白含量降低、鲜重减小、地下鲜重/地上鲜重(R/S)的比值升高,根系中初级氮同化的关键酶硝酸还原酶(NR)、谷氨酸胺合成酶(GS)、谷氨酸脱氢酶(GDH)的活性降低,叶片中NR、GS 的活性减低、叶绿素含量减少,而GDH 的活性升高。香豆素影响苜蓿幼苗氮代谢和氨同化的关键酶,导致体内养分的缺失是香豆素抑制苜蓿幼苗生长的机理之一。Coumarins are lactones of o-hydroxycinnamic acid, and are allelopathiccompounds that originate in the phenylpropanoid pathway. They are synthesized byalmost all higher plants. According to previous studies, coumarins were mostimportant allelochemicals in Chinese prickly ash. Systematically research of theeffect of coumarin could help to comprehend the continuous cropping impediment.The effects of coumarin on seed germination and primary nitrogen assimilation ofalfalfa were studied. The main results showed that:1. We compared four common germination indices (S, AS, CRG, GT)preciously calculated with the same date. The results showed that, at theconcentration of 1.0 mM, coumarin inhibited seeds germination. Among all indices,the S index was most sensitive, followed by the AS and CRG indices. Andsuggestions on the expression of bioassay results were also provided.2. At concentrations above 0.3 mM, coumarin inhibited seed germination in aconcentration-dependent manner. During seed imbibitionⅡ, coumarin at 1.0 mMsignificantly reduced the activities of superoxide dismutase (SOD), catalase (CAT),peroxidase (POD), while the content of malonyldialdehyde (MDA) in alfalfa seedssignificantly increased. The higher concentration coumarin destroyed structure ofmembrane and influenced activities of antioxidant enzymes, which might be one ofthe reasons that coumarin decreased germination rate of alfalfa, and one of the keyfactors influencing Chinese prickly ash-alfalfa intercropping.3. Alfalfa plants were exposed to different concentration of coumarin (0、25μM、50 μM、0.1 mM、1.0 mM) grown for 10 days on control medium. Coumarin, in the range of 25 μM~50 μM, significantly stimulated the net nitrate uptake.Increasing coumarin concentration led to a decrease of protein contents in theleaves and roots. The root to shoot (R/S) FW ratio was increased by increasingcoumarin concentration. Under high coumarin concentration, the activities of nitratereductase (NR) and glutamine synthetase (GS) were repressed in the roots andleaves. Glutamate dehydrogenase (GDH) was inhibited in the roots, while enhancedin the leaves. Chlorophyll contents in the leaves were also decreased under highcoumain concentration. Coumarin decreased alfalfa growth by (i) nutritionaldeficiencies shown by the decrease of nitrate, (ii) lowered N compound synthesisvia inhibition of nitrate reduction and ammonium assimilation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grape (Vitis spp.) is a culturally and economically important crop plant that has been cultivated for thousands of years, primarily for the production of wine. Grape berries accumulate a myriad of phenylpropanoid secondary metabolites, many of which are glucosylated in plantae More than 90 O-glucosyltransferases have been cloned and biochemically characterized from plants, only two of which have been isolated from Vitis spp. The world-wide economic importance of grapes as a crop plant, the human health benefits associated with increased consumption of grape-derived metabolites, the biological relevance of glucosylation, and the lack of information about Vitis glucosyltransferases has inspired the identification, cloning and biochemical characterization of five novel "family 1" O-glucosyltransferases from Concord grape (Vitis labrusca cv. Concord). Protein purification and associated protein sequencIng led to the molecular cloning of UDP-glucose: resveratrollhydroxycinnamic acid O-glucosyltransferase (VLRSGT) from Vitis labrusca berry mesocarp tissue. In addition to being the first glucosyltransferase which accepts trans-resveratrol as a substrate to be characterized in vitro, the recombinant VLRSGT preferentially produces the glucose esters of hydroxycinnamic acids at pH 6.0, and the glucosides of trans-resveratrol and flavonols at 'pH 9.0; the first demonstration of pH-dependent bifunctional glucosylation for this class of enzymes. Gene expression and metabolite profiling support a role for this enzyme in the bifuncitonal glucosylation ofstilbenes and hydroxycinnamic acids in plantae A homology-based approach to cloning was used to identify three enzymes from the Vitis vinifera TIGR grape gene index which had high levels of protein sequence iii identity to previously characterized UDP-glucose: anthocyanin 5-0-glucosyltransferases. Molecular cloning and biochemical characterization demonstrated that these enzymes (rVLOGTl, rVLOGT2, rVLOGT3) glucosylate the 7-0-position of flavonols and the xenobiotic 2,4,5-trichlorophenol (TCP), but not anthocyanins. Variable gene expression throughout grape berry development and enzyme assays with native grape berry protein are consistent with a role for these enzymes in the glucosylation of flavonols; while the broad substrate specificity, the ability of these enzymes to glucosylate TCP and expression of these genes in tissues which are subject to pathogen attack (berry, flower, bud) is consistent with a role for these genes in the plant defense response. Additionally, the Vitis labrusca UDP-glucose: flavonoid 3-0-glucosyltransferase (VL3GT) was identified, cloned and characterized. VL3GT has 96 % protein sequence identity to the previously characterized Vitis vinifera flavonoid 3-0-glucosyltransferase (VV3GT); and glucosylates the 3-0-position of anthocyanidins and flavonols in vitro. Despite high levels of protein sequence identity, VL3GT has distinct biochemical characteristics (as compared to VV3GT), including a preference for B-ring methylated flavonoids and the inability to use UDP-galactose as a donor substrate. RT-PCR analysis of VL3GT gene expression and enzyme assays with native grape protein is consistent with an in planta role for this enzyme in the glucosylation of anthocyanidins,but not flavonols. These studies reveal the power of combining several biochemistry- and molecular biology-based tools to identify, clone, biochemically characterize and elucidate the in planta function of several biologically relevant O-glucosyltransferases from Vitis spp.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The demand for plant material of Rhodiola rosea L. (Crassulaceae) for medicinal use has increased recently, amid concerns about its quality and sustainability. We have analysed the content of phenylpropanoids (total rosavins) and salidroside in liquid extracts from 3-year old cultivated plants of European origin, and mapped the influence of plant part (rhizome versus root), genotype, drying, cutting, and extraction solvent to chemical composition. Rhizomes contained 1.5-4 times more salidroside (0.3-0.4% dry wt) and total rosavins (1.2-3.0%) than roots. The qualitative decisive phenylpropanoid content in the extracts was most influenced by plant part, solvent, and genotype, while drying temperature and cutting conditions were of less importance. We have shown that R. rosea from different boreal European provenances can be grown under temperate conditions and identified factors to obtain consistent high quality extracts provided that authentic germplasm is used and distinguished between rhizome, roots and their mixtures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eugenol is an allyl chain-substituted guaiacol in the biosynthesized phenylpropanoid compound class derived from Syzygium aromaticum L. and widely used in folk medicine. Nonetheless, its pharmacological use is limited by some problems, such as instability when exposed to light and high temperature. In order to enhance stability, the eugenol molecule was structurally modified, resulting in eugenyl acetate. The eugenyl acetate`s thermal behavior and crystal structure was then characterized by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) and compared to a commercial sample.