405 resultados para microspheres


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This communication describes a single-step electrospraying technique that generates core-shell microspheres (CSMs) with encapsulated protein as the core and an amphiphilic biodegradable polymer as the shell. The protein release profiles of the electrosprayed CSMs showed steady release kinetics over 3 weeks without a significant initial burst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of the process variables, pH of aqueous phase, rate of addition of organic, polymeric, drug-containing phase to aqueous phase, organic:aqueous phase volume ratio and aqueous phase temperature on the entrapment of propranolol hydrochloride in ethylcellulose (N4) microspheres prepared by the solvent evaporation method were examined using a factorial design. The observed range of drug entrapment was 1.43 +/- 0.02%w/w (pH 6, 25 degrees C, phase volume ratio 1:10, fast rate of addition) to 16.63 +/- 0.92%w/w (pH 9, 33 degrees C, phase volume ratio 1:10, slow rate of addition) which corresponded to mean entrapment efficiencies of 2.86 and 33.26, respectively. Increased pH, increased temperature and decreased rate of addition significantly enhanced entrapment efficiency. However, organic:aqueous phase volume ratio did not significantly affect drug entrapment. Statistical interactions were observed between pH and rate of addition, pH and temperature, and temperature and rate of addition. The observed interactions involving pH are suggested to be due to the abilities of increased temperature and slow rate of addition to sufficiently enhance the solubility of dichloromethane in the aqueous phase, which at pH 9, but not pH 6, allows partial polymer precipitation prior to drug partitioning into the aqueous phase. The interaction between temperature and rate of addition is due to the relative lack of effect of increased temperature on drug entrapment following slow rate of addition of the organic phase. In comparison to the effects of pH on drug entrapment, the contributions of the other physical factors examined were limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The immunogenicity of proteins encapsulated in poly(DL-lactide-co-glycolide) (PLG) microspheres has not been investigated to any extent in large animal models. In this study, IgG and IgA responses to ovalbumin (OVA), encapsulated in microspheres was investigated following intranasal inoculation into calves. Scanning electron microscopy and flow cytometric analysis demonstrated a uniform microsphere population with a diameter of <2.5 micrometers. Ovalbumin was released steadily from particles stored in PBS almost in a linear fashion, and after 4 weeks many particles showed cracks and fissures in their surface structure. Following intranasal inoculation of calves with different doses of encapsulated antigen, mean levels of ovalbumin-specific IgA were observed to increase steadily but significant differences in IgA levels (from the pre-inoculation level) were only observed following a second intranasal inoculation. With 0.5 and 1.0mg doses of antigen, ovalbumin-specific IgG was also detected in serum. Ovalbumin-specific IgA persisted in nasal secretions for a considerable period of time and were still detectable in four out of seven animals, 6 months after inoculation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paralytic shellfish poisoning (PSP) is a potentially fatal human health condition caused by the consumption of shellfish containing high levels of PSP toxins. Toxin extraction from shellfish and from algal cultures for use as standards and analysis by alternative analytical monitoring methods to the mouse bioassay is extensive and laborious. This study investigated whether a selected MAb antibody could be coupled to a novel form of magnetic microsphere (hollow glass magnetic microspheres, brand name Ferrospheres-N) and whether these coated microspheres could be utilized in the extraction of low concentrations of the PSP toxin, STX, from potential extraction buffers and spiked mussel extracts. The feasibility of utilizing a mass of 25 mg of Ferrospheres-N, as a simple extraction procedure for STX from spiked sodium acetate buffer, spiked PBS buffer and spiked mussel extracts was determined. The effects of a range of toxin concentrations (20-300 ng/mL), incubation times and temperature on the capability of the immuno-capture of the STX from the spiked mussel extracts were investigated. Finally, the coated microspheres were tested to determine their efficiency at extracting PSP toxins from naturally contaminated mussel samples. Toxin recovery after each experiment was determined by HPLC analysis. This study on using a highly novel immunoaffinity based extraction procedure, using STX as a model, has indicated that it could be a convenient alternative to conventional extraction procedures used in toxin purification prior to sample analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissolved Air Flotation (DAF) is a well-known coagulation-flotation system applied at large scale for microalgae harvesting. Compared to conventional harvesting technologies DAF allows high cell recovery at lower energy demand. By replacing microbubbles with microspheres, the innovative Ballasted Dissolved Air Flotation (BDAF) technique has been reported to achieve the same algae cell removal efficiency, while saving up to 80% of the energy required for the conventional DAF unit. Using three different algae cultures (Scenedesmus obliquus, Chlorella vulgaris and Arthrospira maxima), the present work investigated the practical, economic and environmental advantages of the BDAF system compared to the DAF system. 99% cells separation was achieved with both systems, nevertheless, the BDAF technology allowed up to 95% coagulant reduction depending on the algae species and the pH conditions adopted. In terms of floc structure and strength, the inclusion of microspheres in the algae floc generated a looser aggregate, showing a more compact structure within single cell alga, than large and filamentous cells. Overall, BDAF appeared to be a more reliable and sustainable harvesting system than DAF, as it allowed equal cells recovery reducing energy inputs, coagulant demand and carbon emissions. © 2014 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Freshwater and brackish microalgal toxins, such as microcystins, cylindrospermopsins, paralytic toxins, anatoxins or other neurotoxins are produced during the overgrowth of certain phytoplankton and benthic cyanobacteria, which includes either prokaryotic or eukaryotic microalgae. Although, further studies are necessary to define the biological role of these toxins, at least some of them are known to be poisonous to humans and wildlife due to their occurrence in these aquatic systems. The World Health Organization (WHO) has established as provisional recommended limit 1 μg of microcystin-LR per liter of drinking water. In this work we present a microsphere-based multi-detection method for five classes of freshwater and brackish toxins: microcystin-LR (MC-LR), cylindrospermopsin (CYN), anatoxin-a (ANA-a), saxitoxin (STX) and domoic acid (DA). Five inhibition assays were developed using different binding proteins and microsphere classes coupled to a flow-cytometry Luminex system. Then, assays were combined in one method for the simultaneous detection of the toxins. The IC50's using this method were 1.9 ± 0.1 μg L−1 MC-LR, 1.3 ± 0.1 μg L−1 CYN, 61 ± 4 μg L−1 ANA-a, 5.4 ± 0.4 μg L−1 STX and 4.9 ± 0.9 μg L−1 DA. Lyophilized cyanobacterial culture samples were extracted using a simple procedure and analyzed by the Luminex method and by UPLC–IT-TOF-MS. Similar quantification was obtained by both methods for all toxins except for ANA-a, whereby the estimated content was lower when using UPLC–IT-TOF-MS. Therefore, this newly developed multiplexed detection method provides a rapid, simple, semi-quantitative screening tool for the simultaneous detection of five environmentally important freshwater and brackish toxins, in buffer and cyanobacterial extracts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc selenide nanospheres were prepared from a diphenyl diselenide precursor and a range of chloro- and bromozincate(II) ionic liquids via a microwave-assisted ionothermal route; this is the first report on the use of microwave irradiation in combination with ionic liquids to prepare this material. The method is a time-efficient and a facile one-pot reaction to produce zinc(II) selenide nanomaterials. The product formation in the ionic liquids has been monitored using Raman spectroscopy. The products have been characterised using PXRD, SEM, EDX, photoluminescence and UV-VIS spectroscopy. Advantages of this new route, such as ease of solubilisation of all reactants into one phase at high concentration, the negligible vapour pressure irrespective of the reaction temperature, very fast reaction times, ease of potential scale-up and reproducibility are discussed.



Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microcystins and nodularin are toxic cyanobacterial secondary metabolites produced by cyanobacteria that pose a threat to human health in drinking water. Conventional water treatment methods often fail to remove these toxins. Advanced oxidation processes such as TiO2 photocatalysis have been shown to effectively degrade these compounds. A particular issue that has limited the widespread application of TiO2 photocatalysis for water treatment has been the separation of the nanoparticulate power from the treated water. A novel catalyst format, TiO2 coated hollow glass spheres (Photospheres™), is far more easily separated from treated water due to its buoyancy. This paper reports the photocatalytic degradation of eleven microcystin variants and nodularin in water using Photospheres™. It was found that the Photospheres™ successfully decomposed all compounds in 5 minutes or less. This was found to be comparable to the rate of degradation observed using a Degussa P25 material, which has been previously reported to be the most efficient TiO2 for photocatalytic degradation of microcystins in water. Furthermore, it was observed that the degree of initial catalyst adsorption of the cyanotoxins depended on the amino acid in the variable positions of the microcystin molecule. The fastest degradation (2 minutes) was observed for the hydrophobic variants (microcystin-LY, -LW, -LF). Suitability of UV-LEDs as an alternative low energy light source was also evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(3-hydroxybutyrate), P(3HB), produced from Bacillus cereus SPV using a simple glucose feeding strategy was used to fabricate P(3HB) microspheres using a solid-in-oil-water (s/o/w) technique. For this study, several parameters such as polymer concentration, surfactant and stirring rates were varied in order to determine their effect on microsphere characteristics. The average size of the microspheres was in the range of 2 μm to 1.54 μm with specific surface areas varying between 9.60 m(2)/g and 6.05 m(2)/g. Low stirring speed of 300 rpm produced slightly larger microspheres when compared to the smaller microspheres produced when the stirring velocity was increased to 800 rpm. The surface morphology of the microspheres after solvent evaporation appeared smooth when observed under SEM. Gentamicin was encapsulated within these P(3HB) microspheres and the release kinetics from the microspheres exhibiting the highest encapsulation efficiency, which was 48%, was investigated. The in vitro release of gentamicin was bimodal, an initial burst release was observed followed by a diffusion mediated sustained release. Biodegradable P(3HB) microspheres developed in this research has shown high potential to be used in various biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Present work is aimed at development of an appropriate microbial technology for protection of larvae of macrobrachium rosenbergii from disease and to increase survival rate in hatcheries. Application of immunostimulants to activate the immune system of cultured animals against pathogen is the widely accepted alternative to antibiotics in aquaculture. The most important immunostimulant is glucan. Therefore a research programme entitled as extraction of glucan from Acremonium diospyri and its application in macrobrachium rosenbergii larval rearing system along with bacterians as microspheres. The main objectives of the study are development of aquaculture grade glucan from acremonium diospyri, microencapsulated drug delivery system for the larvae of M. rosenbergii and microencapsulated glucan with bacterian preparation for the enhanced production of M. rosenbergii in larval rearing system. Based on the results of field trials microencapsulated glucan with bacterin preparation, it is concluded that the microencapsulated preparation at a concentration of 25g per million larvae once in seven days will enhance the production and quality seed of M. rosenbergii.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glass microspheres containing radionuclides are used to treat liver cancer. A promising alternative therapy is being developed based on the magnetic hyperthermia which is related to the heat supplied by a magnetic material under an alternating current magnetic field. The advantage of this option is that most of killed cells are cancer cells which are more susceptible to the temperature raise. In the present work aluminum iron silicate glasses containing minor glass modifiers and nucleating agents were synthesized as irregular shape particles which were further transformed in microspheres by using a petrol liquefied gas-oxygen torch. The optimized processing parameters which lead to microspheres that give a response to the magnetic field were determined. The dissolution rate in water at 90 degrees C was determined to be 3 x 10(-8) g cm(-2) min(-1). The microsphere size distribution was determined by laser scattering. The crystalline phase responsible for the ferromagnetic response was identified as magnetite. Since this phase has a high saturation magnetization and high Curie temperature, it is potentially useful for biomedical applications. The hysteresis magnetic loop was measured for materials produced in different conditions, and some of them showed to be appropriated for thermotherapy. The ratio Fe(3+)/Fe(total) was determined by Mossbauer spectroscopy. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Class microspheres containing the radioisotope (32)P, a beta(-) particle emitter, and half-life of 14.3 days, can be easily introduced in specific human organs such as liver, pancreas. and uterus to kill cancer cells. In the present work phosphate glass microspheres were produced with different compositions and particle size distribution in the range of 20- 30 mu m. Two different thermal processes were used to spherodize glass particles originally with irregular shapes. Samples were characterized by X-rays diffraction to check the amorphous structure, energy dispersive X-rays fluorescence spectroscopy to determine the final glass composition, and Fourier transformed infrared spectroscopy to determine the structural groups in the glass structure. The dissolution rate of glass samples in water was determined at 90 degrees C, and in simulated body fluid (SBF) at 37 degrees C. Classes with dissolution rates close to 10(-5) g/(cm(2) day) were obtained, which make them suitable for the present application. Scanning electron microscopy was used to evaluate the shape of the microspheres before and after the dissolution tests. The cytotoxicity tests showed that these microspheres can be used for biological applications. (C) 2008 Elsevier B.V. All rights reserved.