974 resultados para metabolic regulation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To determine whether pre-exercise muscle glycogen content influences the transcription of several early-response genes involved in the regulation of muscle growth, seven male strength-trained subjects performed one-legged cycling exercise to exhaustion to lower muscle glycogen levels (Low) in one leg compared with the leg with normal muscle glycogen (Norm) and then the following day completed a unilateral bout of resistance training (RT). Muscle biopsies from both legs were taken at rest, immediately after RT, and after 3 h of recovery. Resting glycogen content was higher in the control leg (Norm leg) than in the Low leg (435 ± 87 vs. 193 ± 29 mmol/kg dry wt; P < 0.01). RT decreased glycogen content in both legs (P < 0.05), but postexercise values remained significantly higher in the Norm than the Low leg (312 ± 129 vs. 102 ± 34 mmol/kg dry wt; P < 0.01). GLUT4 (3-fold; P < 0.01) and glycogenin mRNA abundance (2.5-fold; not significant) were elevated at rest in the Norm leg, but such differences were abolished after exercise. Preexercise mRNA abundance of atrogenes was also higher in the Norm compared with the Low leg [atrogin: ?14-fold, P < 0.01; RING (really interesting novel gene) finger: ?3-fold, P < 0.05] but decreased for atrogin in Norm following RT (P < 0.05). There were no differences in the mRNA abundance of myogenic regulatory factors and IGF-I in the Norm compared with the Low leg. Our results demonstrate that 1) low muscle glycogen content has variable effects on the basal transcription of select metabolic and myogenic genes at rest, and 2) any differences in basal transcription are completely abolished after a single bout of heavy resistance training. We conclude that commencing resistance exercise with low muscle glycogen does not enhance the activity of genes implicated in promoting hypertrophy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: We investigated to what extent changes in metabolic rate and composition of weight loss explained the less-than-expected weight loss in obese men and women during a diet-plus-exercise intervention. Design: 16 obese men and women (41 ± 9 years; BMI 39 ± 6 kg/m2) were investigated in energy balance before, after and twice during a 12-week VLED (565–650 kcal/day) plus exercise (aerobic plus resistance training) intervention. The relative energy deficit (EDef) from baseline requirements was severe (74-87%). Body composition was measured by deuterium dilution and DXA and resting metabolic rate (RMR) by indirect calorimetry. Fat mass (FM) and fat-free mass (FFM) were converted into energy equivalents using constants: 9.45 kcal/gFM and 1.13 kcal/gFFM. Predicted weight loss was calculated from the energy deficit using the '7700 kcal/kg rule'. Results: Changes in weight (-18.6 ± 5.0 kg), FM (-15.5 ± 4.3 kg), and FFM (-3.1 ± 1.9 kg) did not differ between genders. Measured weight loss was on average 67% of the predicted value, but ranged from 39 to 94%. Relative EDef was correlated with the decrease in RMR (R=0.70, P<0.01) and the decrease in RMR correlated with the difference between actual and expected weight loss (R=0.51, P<0.01). Changes in metabolic rate explained on average 67% of the less-than-expected weight loss, and variability in the proportion of weight lost as FM accounted for a further 5%. On average, after adjustment for changes in metabolic rate and body composition of weight lost, actual weight loss reached 90% of predicted values. Conclusion: Although weight loss was 33% lower than predicted at baseline from standard energy equivalents, the majority of this differential was explained by physiological variables. While lower-than-expected weight loss is often attributed to incomplete adherence to prescribed interventions, the influence of baseline calculation errors and metabolic down-regulation should not be discounted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A long-running issue in appetite research concerns the influence of energy expenditure on energy intake. More than 50 years ago, Otto G. Edholm proposed that "the differences between the intakes of food [of individuals] must originate in differences in the expenditure of energy". However, a relationship between energy expenditure and energy intake within any one day could not be found, although there was a correlation over 2 weeks. This issue was never resolved before interest in integrative biology was replaced by molecular biochemistry. Using a psychobiological approach, we have studied appetite control in an energy balance framework using a multi-level experimental system on a single cohort of overweight and obese human subjects. This has disclosed relationships between variables in the domains of body composition [fat-free mass (FFM), fat mass (FM)], metabolism, gastrointestinal hormones, hunger and energy intake. In this Commentary, we review our own and other data, and discuss a new formulation whereby appetite control and energy intake are regulated by energy expenditure. Specifically, we propose that FFM (the largest contributor to resting metabolic rate), but not body mass index or FM, is closely associated with self-determined meal size and daily energy intake. This formulation has implications for understanding weight regulation and the management of obesity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to their inherently hypoxic environment, cancer cells often resort to glycolysis, or the anaerobic breakdown of glucose to form ATP to provide for their energy needs, known as the Warburg effect. At the same time, overexpression of the insulin receptor in non-small cell lung cancer (NSCLC) is associated with an increased risk of metastasis and decreased survival. The uptake of glucose into cells is carried out via glucose transporters or GLUTs. Of these, GLUT-4 is essential for insulin-stimulated glucose uptake. Following treatment with the epigenetic targeting agents histone deacetylase inhibitors (HDACi), GLUT-3 and GLUT-4 expression were found to be induced in NSCLC cell lines, with minimal responses in transformed normal human bronchial epithelial cells (HBECs). Similar results for GLUT-4 were observed in cells derived from liver, muscle, kidney and pre-adipocytes. Bioinformatic analysis of the promoter for GLUT-4 indicates that it may also be regulated by several chromatin binding factors or complexes including CTCF, SP1 and SMYD3. Chromatin immunoprecipitation studies demonstrate that the promoter for GLUT-4 is dynamically remodeled in response to HDACi. Overall, these results may have value within the clinical setting as (a) it may be possible to use this to enhance fluorodeoxyglucose (18F) positron emission tomography (FDG-PET) imaging sensitivity; (b) it may be possible to target NSCLC through the use of HDACi and insulin mediated uptake of the metabolic targeting drugs such as 2-deoxyglucose (2-DG); or (c) enhance or sensitize NSCLC to chemotherapy. © 2011 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin dysregulation is common in horses although the mechanisms of metabolic dysfunction are poorly understood. We hypothesized that insulin signaling in striated (cardiac and skeletal) muscle and lamellae may be mediated through different receptors as a result of receptor content, and that transcriptional regulation of downstream signal transduction and glucose transport may also differ between tissues sites during hyperinsulinemia. Archived samples from horses treated with a prolonged insulin infusion or a balanced electrolyte solution were used. All treated horses developed marked hyperinsulinemia and clinical laminitis. Protein expression was compared across tissues for the insulin receptor and insulin-like growth factor 1 receptor (IGF-1R) by immunoblotting. Gene expression of metabolic insulin-signaling markers (insulin receptor substrate 1, Akt2, and glycogen synthase kinase 3 beta [GSK-3β]) and glucose transport (basal glucose transporter 1 and insulin-sensitive glucose transporter 4) was evaluated using real-time reverse transcription polymerase chain reaction. Lamellar tissue contained significantly more IGF-1R protein than skeletal muscle, indicating the potential significance of IGF-1R signaling for this tissue. Gene expression of the selected markers of insulin signaling and glucose transport in skeletal muscle and lamellar tissues was unaffected by prolonged hyperinsulinemia. In contrast, the significant upregulation of Akt2, GSK-3β, GLUT1, and GLUT4 gene expression in cardiac tissue suggested that the prolonged hyperinsulinemia induced an increase in insulin sensitivity and a transcriptional activation of glucose transport. Responses to insulin are tissue-specific, and extrapolation of data across tissue sites is inappropriate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental factors contribute to over 70% of crop yield losses worldwide. Of these drought and salinity are the most significant causes of crop yield reduction. Rice is an important staple crop that feeds more than half of the world’s population. However among the agronomically important cereals rice is the most sensitive to salinity. In the present study we show that exogenous expression of anti-apoptotic genes from diverse origins, AtBAG4 (Arabidopsis), Hsp70 (Citrus tristeza virus) and p35 (Baculovirus), significantly improves salinity tolerance in rice at the whole plant level. Physiological, biochemical and agronomical analyses of transgenic rice expressing each of the anti-apoptotic genes subjected to salinity treatment demonstrated traits associated with tolerant varieties including, improved photosynthesis, membrane integrity, ion and ROS maintenance systems, growth rate, and yield components. Moreover, FTIR analysis showed that the chemical composition of salinity-treated transgenic plants is reminiscent of non-treated, unstressed controls. In contrast, wild type and vector control plants displayed hallmark features of stress, including pectin degradation upon subjection to salinity treatment. Interestingly, despite their diverse origins, transgenic plants expressing the anti-apoptotic genes assessed in this study displayed similar physiological and biochemical characteristics during salinity treatment thus providing further evidence that cell death pathways are conserved across broad evolutionary kingdoms. Our results reveal that anti-apoptotic genes facilitate maintenance of metabolic activity at the whole plant level to create favorable conditions for cellular survival. It is these conditions that are crucial and conducive to the plants ability to tolerate/adapt to extreme environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants constantly face adverse environmental conditions, such as drought or extreme temperatures that threaten their survival. They demonstrate astonishing metabolic flexibility in overcoming these challenges and one of the key responses to stresses is changes in gene expression leading to alterations in cellular functions. This is brought about by an intricate network of transcription factors and associated regulatory proteins. Protein-protein interactions and post-translational modifications are important steps in this control system along with carefully regulated degradation of signaling proteins. This work concentrates on the RADICAL-INDUCED CELL DEATH1 (RCD1) protein which is an important regulator of abiotic stress-related and developmental responses in Arabidopsis thaliana. Plants lacking this protein function display pleiotropic phenotypes including sensitivity to apoplastic reactive oxygen species (ROS) and salt, ultraviolet B (UV-B) and paraquat tolerance, early flowering and senescence. Additionally, the mutant plants overproduce nitric oxide, have alterations in their responses to several plant hormones and perturbations in gene expression profiles. The RCD1 gene is transcriptionally unresponsive to environmental signals and the regulation of the protein function is likely to happen post-translationally. RCD1 belongs to a small protein family and, together with its closest homolog SRO1, contains three distinguishable domains: In the N-terminus, there is a WWE domain followed by a poly(ADP-ribose) polymerase-like domain which, despite sequence conservation, does not seem to be functional. The C-terminus of RCD1 contains a novel domain called RST. It is present in RCD1-like proteins throughout the plant kingdom and is able to mediate physical interactions with multiple transcription factors. In conclusion, RCD1 is a key point of signal integration that links ROS-mediated cues to transcriptional regulation by yet unidentified means, which are likely to include post-translational mechanisms. The identification of RCD1-interacting transcription factors, most of whose functions are still unknown, opens new avenues for studies on plant stress as well as developmental responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone is a mineralized tissue that enables multiple mechanical and metabolic functions to be carried out in the skeleton. Bone contains distinct cell types: osteoblasts (bone-forming cells), osteocytes (mature osteoblast that embedded in mineralized bone matrix) and the osteoclasts (bone-resorbing cells). Remodelling of bone begins early in foetal life, and once the skeleton is fully formed in young adults, almost all of the metabolic activity is in this form. Bone is constantly destroyed or resorbed by osteoclasts and then replaced by osteoblasts. Many bone diseases, i.e. osteoporosis, also known as bone loss, typically reflect an imbalance in skeletal turnover. The cyclic adenosine monophosphate (cAMP) and the cyclic guanosine monophosphate (cGMP) are second messengers involved in a variety of cellular responses to such extracellular agents as hormones and neurotransmitters. In the hormonal regulation of bone metabolism, i.e. via parathyroid hormone (PTH), parathyroid hormone-related peptide (PTHrp) and prostaglandin E2 signal via cAMP. cAMP and cGMP are formed by adenylate and guanylate cyclases and are degraded by phosphodiesterases (PDEs). PDEs determine the amplitudes of cyclic nucleotide-mediated hormonal responses and modulate the duration of the signal. The activities of the PDEs are regulated by multiple inputs from other signalling systems and are crucial points of cross-talk between the pathways. Food-derived bioactive peptides are reported to express a variety of functions in vivo. The angiotensin-converting enzymes (ACEs) are involved in the regulation of the specific maturation or degradation of a number of mammalian bioactive peptides. The bioactive peptides offer also a nutriceutical and a nutrigenomic aspect to bone cell biology. The aim of this study was to investigate the influence of PDEs and bioactive peptides on the activation and the differentiation of human osteoblast cells. The profile of PDEs in human osteoblast-like cells and the effect of glucocorticoids on the function of cAMP PDEs, were investigated at the mRNA and enzyme levels. The effects of PDEs on bone formation and osteoblast gene expression were determined with chemical inhibitors and siRNAs (short interfering RNAs). The influence of bioactive peptides on osteoblast gene expression and proliferation was studied at the mRNA and cellular levels. This work provides information on how PDEs are involved in the function and the differentiation of osteoblasts. The findings illustrate that gene-specific silencing with an RNA interference (RNAi) method is useful in inhibiting, the gene expression of specific PDEs and further, PDE7 inhibition upregulates several osteogenic genes and increases bALP activity and mineralization in human mesenchymal stem cells-derived osteoblasts. PDEs appear to be involved in a mechanism by which glucocorticoids affect cAMP signaling. This may provide a potential route in the formation of glucocorticoid-induced bone loss, involving the down-regulation of cAMP-PDE. PDEs may play an important role in the regulation of osteoblastic differentiation. Isoleucine-proline-proline (IPP), a bioactive peptide, possesses the potential to increase osteoblast proliferation, differentiation and signalling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The positive homotropic binding of tetrahydrofolate to monkey liver serine hydroxymethyltransferase was abolished on preincubating the enzyme with NADH and NADPH. NAD+ was a negative heterotropic effector, whereas NADP+ was without effect. The allosteric effects of nicotinamide nucleotides on the serine hydroxymethyltransferase, reported for the first time, lead to a better understanding of the regulation of the metabolic interconversion of folate coenzymes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism underlying homeostatic regulation of the plasma levels of free retinol-binding protein and free thyroxine, the systemic distribution of which is of great importance, has been investigated. A simple method has been developed to determine the rate of dissociation of a ligand from the binding protein. Analysis of the dissociation process of retinol-binding protein from prealbumin-2 reveals that the free retinol-binding protein pool undergoes massive flux, and the prealbumin-2 participates in homeostatic regulation of the free retinol-binding protein pool. Studies on the dissociation process of thyroxine from its plasma carrier proteins show that the various plasma carrier proteins share two roles. Of the two types of protein, the thyroxine-binding globulin (the high affinity binding protein) contributes only 27% of the free thyroxine in a rapid transition process, despite its being the major binding protein. But prealbumin-2, which has lower affinity towards thyroxine, participates mainly in a rapid flux of the free thyroxine pool. Thus thyroxine-binding globulin acts predominantly as a plasma reservoir of thyroxine, and also probably in the �buffering� action on plasma free thyroxine level, in the long term, while prealbumin-2 participates mainly in the maintainance of constancy of free thyroxine levels even in the short term. The existence of these two types of binding protein facilitates compensation for the metabolic flux of the free ligand and maintenance of the thyroxine pool within a very narrow range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant oils are stored in oleosomes or oil bodies, which are surrounded by a monolayer of phospholipids embedded with oleosin proteins that stabilize the structure. Recently, a structural protein, Oleosin3 (OLE3), was shown to exhibit both monoacylglycerol acyltransferase and phospholipase A(2) activities. The regulation of these distinct dual activities in a single protein is unclear. Here, we report that a serine/threonine/tyrosine protein kinase phosphorylates oleosin. Using bimolecular fluorescence complementation analysis, we demonstrate that this kinase interacts with OLE3 and that the fluorescence was associated with chloroplasts. Oleosin-green fluorescent protein fusion protein was exclusively associated with the chloroplasts. Phosphorylated OLE3 exhibited reduced monoacylglycerol acyltransferase and increased phospholipase A(2) activities. Moreover, phosphatidylcholine and diacylglycerol activated oleosin phosphorylation, whereas lysophosphatidylcholine, oleic acid, and Ca2+ inhibited phosphorylation. In addition, recombinant peanut (Arachis hypogaea) kinase was determined to predominantly phosphorylate serine residues, specifically serine-18 in OLE3. Phosphorylation levels of OLE3 during seed germination were determined to be higher than in developing peanut seeds. These findings provide direct evidence for the in vivo substrate selectivity of the dual-specificity kinase and demonstrate that the bifunctional activities of oleosin are regulated by phosphorylation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methanol expression regulator 1 (Mxr1p) is a zinc finger protein that regulates the expression of genes encoding enzymes of the methanol utilization pathway in the methylotrophic yeast Pichia pastoris by binding to Mxr1p response elements (MXREs) present in their promoters. Here we demonstrate that Mxr1p is a key regulator of acetate metabolism as well. Mxr1p is cytosolic in cells cultured in minimal medium containing a yeast nitrogen base, ammonium sulfate, and acetate (YNBA) but localizes to the nucleus of cells cultured in YNBA supplemented with glutamate or casamino acids as well as nutrient-rich medium containing yeast extract, peptone, and acetate (YPA). Deletion of Mxr1 retards the growth of P. pastoris cultured in YNBA supplemented with casamino acids as well as YPA. Mxr1p is a key regulator of ACS1 encoding acetyl-CoA synthetase in cells cultured in YPA. A truncated Mxr1p comprising 400 N-terminal amino acids activates ACS1 expression and enhances growth, indicating a crucial role for the N-terminal activation domain during acetate metabolism. The serine 215 residue, which is known to regulate the expression of Mxr1p-activated genes in a carbon source-dependent manner, has no role in the Mxr1p-mediated activation of ACS1 expression. The ACS1 promoter contains an Mxr1p response unit (MxRU) comprising two MXREs separated by a 30-bp spacer. Mutations that abrogate MxRU function in vivo abolish Mxr1p binding to MxRU in vitro. Mxr1p-dependent activation of ACS1 expression is most efficient in cells cultured in YPA. The fact that MXREs are conserved in genes outside of the methanol utilization pathway suggests that Mxr1p may be a key regulator of multiple metabolic pathways in P. pastoris.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study was designed to examine whether photoperiod alone was effective to induce seasonal regulations in physiology in root voles (Microtus oeconomus) from the Qinghai-Tibetan plateau noted for its extreme cold environment. Root voles were randomly assigned into either long photoperiod (LD; 16L: 8D) or short photoperiod (SD; 8L: 16D) for 4 weeks at constant temperature (20 degrees C). At the end of acclimation, SD voles showed lower body mass and body fat coupled with higher energy intake than LD voles. SD greatly enhanced thermogenic capacities in root voles, as indicated by elevated basal metabolic rate (BMR), nonshivering thermogenesis (NST), mitochondrial protein content and uncoupling protein-1 (UCP1) content in brown adipose tissue (BAT). Although no variations in serum leptin levels were found between SD and LD voles, serum leptin levels were positively correlated with body mass and body fat mass, and negatively correlated with energy intake and UCP1 content in BAT, respectively. To summarize, SD alone is effective in inducing higher thermogenic capacities and energy intake coupled with lower body mass and body fat mass in root voles. Leptin is potentially involved in the photoperiod induced body mass regulation and thermogenesis in root voles. (c) 2006 Elsevier Inc. All rights reserved.