Influence of preexercise muscle glycogen content on transcriptional activity of metabolic and myogenic genes in well-trained humans


Autoria(s): Churchley, Emmanuel; Coffey, Vernon; Pedersen, David; Shield, Anthony; Carey, Kate; Cameron-Smith, David; Hawley, John
Data(s)

2007

Resumo

To determine whether pre-exercise muscle glycogen content influences the transcription of several early-response genes involved in the regulation of muscle growth, seven male strength-trained subjects performed one-legged cycling exercise to exhaustion to lower muscle glycogen levels (Low) in one leg compared with the leg with normal muscle glycogen (Norm) and then the following day completed a unilateral bout of resistance training (RT). Muscle biopsies from both legs were taken at rest, immediately after RT, and after 3 h of recovery. Resting glycogen content was higher in the control leg (Norm leg) than in the Low leg (435 ± 87 vs. 193 ± 29 mmol/kg dry wt; P < 0.01). RT decreased glycogen content in both legs (P < 0.05), but postexercise values remained significantly higher in the Norm than the Low leg (312 ± 129 vs. 102 ± 34 mmol/kg dry wt; P < 0.01). GLUT4 (3-fold; P < 0.01) and glycogenin mRNA abundance (2.5-fold; not significant) were elevated at rest in the Norm leg, but such differences were abolished after exercise. Preexercise mRNA abundance of atrogenes was also higher in the Norm compared with the Low leg [atrogin: ?14-fold, P < 0.01; RING (really interesting novel gene) finger: ?3-fold, P < 0.05] but decreased for atrogin in Norm following RT (P < 0.05). There were no differences in the mRNA abundance of myogenic regulatory factors and IGF-I in the Norm compared with the Low leg. Our results demonstrate that 1) low muscle glycogen content has variable effects on the basal transcription of select metabolic and myogenic genes at rest, and 2) any differences in basal transcription are completely abolished after a single bout of heavy resistance training. We conclude that commencing resistance exercise with low muscle glycogen does not enhance the activity of genes implicated in promoting hypertrophy.

Identificador

http://eprints.qut.edu.au/44789/

Publicador

American Physiological Society

Relação

DOI:10.1152/japplphysiol.01260.2006

Churchley, Emmanuel, Coffey, Vernon, Pedersen, David, Shield, Anthony, Carey, Kate, Cameron-Smith, David, & Hawley, John (2007) Influence of preexercise muscle glycogen content on transcriptional activity of metabolic and myogenic genes in well-trained humans. Journal of Applied Physiology, 102(4), pp. 1604-1611.

Palavras-Chave #060000 BIOLOGICAL SCIENCES #060100 BIOCHEMISTRY AND CELL BIOLOGY #090000 ENGINEERING #110000 MEDICAL AND HEALTH SCIENCES #110602 Exercise Physiology #adaptation; insulin-like growth factor I; atrogin; RING (really interesting novel gene) finger-1
Tipo

Journal Article