997 resultados para lung parenchyma


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a novel constitutive model of lung parenchyma, which can be used for continuum mechanics based predictive simulations. To develop this model, we experimentally determined the nonlinear material behavior of rat lung parenchyma. This was achieved via uni-axial tension tests on living precision-cut rat lung slices. The resulting force-displacement curves were then used as inputs for an inverse analysis. The Levenberg-Marquardt algorithm was utilized to optimize the material parameters of combinations and recombinations of established strain-energy density functions (SEFs). Comparing the best-fits of the tested SEFs we found Wpar = 4.1 kPa(I1-3)2 + 20.7 kPa(I1 - 3)3 + 4.1 kPa(-2 ln J + J2 - 1) to be the optimal constitutive model. This SEF consists of three summands: the first can be interpreted as the contribution of the elastin fibers and the ground substance, the second as the contribution of the collagen fibers while the third controls the volumetric change. The presented approach will help to model the behavior of the pulmonary parenchyma and to quantify the strains and stresses during ventilation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lack of effective therapies for end-stage lung disease validates the need for stem cell-based therapeutic approaches as alternative treatment options. In contrast with exogenous stem cell sources, the use of resident progenitor cells is advantageous considering the fact that the lung milieu is an ideal and familiar environment, thereby promoting the engraftment and differentiation of transplanted cells. Recent studies have shown the presence of multipotent 'mesenchymal stem cells' in the adult lung. The majority of these reports are, however, limited to animal models, and to date, there has been no report of a similar cell population in adult human lung parenchyma. Here, we show the identification of a population of primary human lung parenchyma (pHLP) mesenchymal stromal cells (MSCs) derived from intraoperative normal lung parenchyma biopsies. Surface and intracellular immunophenotyping by flow cytometry revealed that cultures do not contain alveolar type I epithelial cells or Clara cells, and are devoid of the following hematopoietic markers: CD34, CD45 and CXCR4. Cells show an expression pattern of surface antigens characteristic of MSCs, including CD73, CD166, CD105, CD90 and STRO-1. As per bone marrow MSCs, our pHLP cells have the ability to differentiate along the adipogenic, osteogenic and chondrogenic mesodermal lineages when cultured in the appropriate conditions. In addition, when placed in small airway growth media, pHLP cell cultures depict the expression of aquaporin 5 and Clara cell secretory protein, which is identified with that of alveolar type I epithelial cells and Clara cells, respectively, thereby exhibiting the capacity to potentially differentiate into airway epithelial cells. Further investigation of these resident cells may elucidate a therapeutic cell population capable of lung repair and/or regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While glucocorticoid (GC) administration appears to be beneficial during the acute phase of treatment of neonates at risk of developing chronic lung disease, it is still not clear whether steroid application has an adverse long-term effect on the lung maturation. Thus, the goal of the present work was to analyze GC effects on the pulmonary structure in a rat model where dosage and timing of drug administration were adapted to the therapeutic situation in human neonatology. The animals received daily a maximum of 0.1 mg dexamethasone phosphate per kilogram body weight during the first 4 postnatal days. Investigations were performed at the light microscopic level by means of a digital image analysis system. While there were no differences in the lung architecture between experimental animals and controls on day 4, the earliest time point of observation, we found a widening of airspaces with a concomitant decrease in the alveolar surface area density, representing a loss of parenchymal complexity, on days 10 and 21 in treated rats. On days 36 and 60, however, no alterations in the pulmonary parenchyma could be detected in experimental animals. We conclude from these findings that the GC-induced initial inhibition of development (days 10 and 21) was completely reversed, so that a normal parenchymal architecture and also a normal alveolar surface area density were found in adult rats (days 36 and 60). From the results obtained using the regimen of GC administration described, mimicking more closely the steroid treatment in human neonatology, we conclude that the observed short-term adverse effects on lung development can be fully compensated until adult age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphometric investigations using a point and intersection counting strategy in the lung often are not able to reveal the full set of morphologic changes. This happens particularly when structural modifications are not expressed in terms of volume density changes and when rough and fine surface density alterations cancel each other at different magnifications. Making use of digital image processing, we present a methodological approach that allows to easily and quickly quantify changes of the geometrical properties of the parenchymal lung structure and reflects closely the visual appreciation of the changes. Randomly sampled digital images from light microscopic sections of lung parenchyma are filtered, binarized, and skeletonized. The lung septa are thus represented as a single-pixel wide line network with nodal points and end points and the corresponding internodal and end segments. By automatically counting the number of points and measuring the lengths of the skeletal segments, the lung architecture can be characterized and very subtle structural changes can be detected. This new methodological approach to lung structure analysis is highly sensitive to morphological changes in the parenchyma: it detected highly significant quantitative alterations in the structure of lungs of rats treated with a glucocorticoid hormone, where the classical morphometry had partly failed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Lymphangioleiomyomatosis (LAM) is characterized by proliferation of smooth muscle tissue that causes bronchial obstruction and secondary cystic destruction of lung parenchyma. The aim of this study was to evaluate the typical distribution of cystic defects in LAM with quantitative volumetric chest computed tomography (CT). MATERIALS AND METHODS CT examinations of 20 patients with confirmed LAM were evaluated with region-based quantification of lung parenchyma. Additionally, 10 consecutive patients were identified who had recently undergone CT imaging of the lung at our institution, in which no pathologies of the lung were found, to serve as a control group. Each lung was divided into three regions (upper, middle and lower thirds) with identical number of slices. In addition, we defined a "peel" and "core" of the lung comprising the 2 cm subpleural space and the remaining inner lung area. Computerized detection of lung volume and relative emphysema was performed with the PULMO 3D software (v3.42, Fraunhofer MEVIS, Bremen, Germany). This software package enables the quantification of emphysematous lung parenchyma by calculating the pixel index, which is defined as the ratio of lung voxels with a density <-950HU to the total number of voxels in the lung. RESULTS Cystic changes accounted for 0.1-39.1% of the total lung volume in patients with LAM. Disease manifestation in the central lung was significantly higher than in peripheral areas (peel median: 15.1%, core median: 20.5%; p=0.001). Lower thirds of lung parenchyma showed significantly less cystic changes than upper and middle lung areas combined (lower third: median 13.4, upper and middle thirds: median 19.0, p=0.001). CONCLUSION The distribution of cystic lesions in LAM is significantly more pronounced in the central lung compared to peripheral areas. There is a significant predominance of cystic changes in apical and intermediate lung zones compared to the lung bases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One key problem in modern medical imaging is linking measured data and actual physiological quantities. In this article we derive such a link between the electrical bioimpedance of lung parenchyma, which can be measured by electrical impedance tomography (EIT), and the magnitude of regional ventilation, a key to understanding lung mechanics and developing novel protective ventilation strategies. Two rat-derived three-dimensional alveolar microstructures obtained from synchrotron-based x-ray tomography are each exposed to a constant potential difference for different states of ventilation in a finite element simulation. While the alveolar wall volume remains constant during stretch, the enclosed air volume varies, similar to the lung volume during ventilation. The enclosed air, serving as insulator in the alveolar ensemble, determines the resulting current and accordingly local tissue bioimpedance. From this we can derive a relationship between lung tissue bioimpedance and regional alveolar ventilation. The derived relationship shows a linear dependence between air content and tissue impedance and matches clinical data determined from a ventilated patient at the bedside.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: The present study was performed to investigate the influence of different routes of perfusion on the distribution of the preservation solutions in the lung parenchyma and upper airways. Methods: Pigs were divided into four groups: control (n = 6), pulmonary artery (PA) (n = 6), simultaneous PA + bronchial artery (BA) (n = 8), and retrograde delivery (n = 6). After preparation and cannulation, cardioplegia solution and Euro- Collins solution (ECS) for lung preservation were given simultaneously. After removal of the heart, the double lung bloc was harvested. Following parameters were assessed: total and regional perfusion (dye-labeled microspheres), tissue water content, PA, aorta, left atrial and left ventricular pressures, cardiac output and lung temperature. Results: Our data show that flow of the ECS in lung parenchyma did not reach control values (9.4 ± 1.0 ml/min per g lung wet weight) regardless of the route of delivery (PA 6.3 ± 1.5, PA + BA 4.8 ± 0.9, retrograde 2.7 ± 0.9 ml/min per g lung wet weight). However, flow in the proximal and distal trachea were significantly increased by PA + BA delivery (0.970 ± 0.4, respectively, 0.380 ± 0.2 ml/min per g) in comparison with PA (0.023 ± 0.007, respectively, 0.024 ± 0.070 ml/min per g), retrograde (0.009 ± 0.003, respectively, 0.021 ± 0.006 ml/min per g) and control experiments (0.125 ± 0.0018, respectively, 0.105 ± 0.012 ml/g per min). Similarly the highest flow rates in the right main bronchus were achieved by PA + BA delivery (1.04 ± 0.4 ml/min per g) in comparison with 0.11 ± 0.03 in control, 0.033 ± 0.008 in PA, and 0.019 ± 0.005 ml/min per g in retrograde group. Flows in the left main bronchus were 0.09 ± 0.02 ml/min per g in control, 0.045 ± 0.012 ml/min per g in PA, and 0.027 ± 0.006 ml/min per g in retrograde group. The flow rates were significantly (P = 0.001) increased by PA + BA delivery of the storage solution (0.97 ± 0.3 ml/min per g). Conclusions: Our data show that the distribution of ECS for lung preservation is significantly improved in airway tissues (trachea and bronchi) if a simultaneous PA + BA delivery is used.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In estrogen receptor-negative breast cancer patients, metastatic relapse usually occurs in the lung and is responsible for the fatal outcome of the disease. Thus, a better understanding of the biology of metastasis is needed. In particular, biomarkers to identify patients that are at risk of lung metastasis could open the avenue for new therapeutic opportunities. Here we characterize the biological activity of RARRES3, a new metastasis suppressor gene whose reduced expression in the primary breast tumors identifies a subgroup of patients more likely to develop lung metastasis. We show that RARRES3 downregulation engages metastasis-initiating capabilities by facilitating adhesion of the tumor cells to the lung parenchyma. In addition, impaired tumor cell differentiation due to the loss of RARRES3 phospholipase A1/A2 activity also contributes to lung metastasis. Our results establish RARRES3 downregulation as a potential biomarker to identify patients at high risk of lung metastasis who might benefit from a differentiation treatment in the adjuvant programme.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The 2-year survival rate after conventional radiotherapy for carcinoma of the oesophagus is around 10–20% [8]. Concomitant chemoradiation schedules have produced survival figures of 25–30% at 5 years, and this is now considered standard treatment [1]. Conformal radiotherapy techniques offer the potential to deliver higher doses of radiation to oesophageal tumours [5], and this may improve local tumour control. However, concerns regarding late normal tissue damage to the lung parenchyma and spinal cord remain a concern. Intensitymodulated radiotherapy (IMRT) allows complex dose distributions to be produced, and can reduce the dose to radiosensitive organs close to the tumour [2]. The present study was designed to investigate the impact of beam intensity modulation on treatment planning for carcinoma of the oesophagus, by comparing a standard three-dimensional conformal radiotherapy (3DCRT) technique to an IMRT technique using the same number and orientation of treatment fields.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dendritic cells (DCs) are leukocytes specialised in the uptake, processing, and presentation of antigen and fundamental in regulating both innate and adaptive immune functions. They are mainly localised at the interface between body surfaces and the environment, continuously scrutinising incoming antigen for the potential threat it may represent to the organism. In the respiratory tract, DCs constitute a tightly enmeshed network, with the most prominent populations localised in the epithelium of the conducting airways and lung parenchyma. Their unique localisation enables them to continuously assess inhaled antigen, either inducing tolerance to inoffensive substances, or initiating immunity against a potentially harmful pathogen. This immunological homeostasis requires stringent control mechanisms to protect the vital and fragile gaseous exchange barrier from unrestrained and damaging inflammation, or an exaggerated immune response to an innocuous allergen, such as in allergic asthma. During DC activation, there is upregulation of co-stimulatory molecules and maturation markers, enabling DC to activate naïve T cells. This activation is accompanied by chemokine and cytokine release that not only serves to amplify innate immune response, but also determines the type of effector T cell population generated. An increasing body of recent literature provides evidence that different DC subpopulations, such as myeloid DC (mDC) and plasmacytoid DC (pDC) in the lungs occupy a key position at the crossroads between tolerance and immunity. This review aims to provide the clinician and researcher with a summary of the latest insights into DC-mediated pulmonary immune regulation and its relevance for developing novel therapeutic strategies for various disease conditions such as infection, asthma, COPD, and fibrotic lung disease.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this study was to assess positive end-expiratory pressure (PEEP)-induced lung overdistension and alveolar recruitment in six patients with acute lung injury (ALI) using a computed tomographic (CT) scan method. Lung overdistension was first determined in six healthy volunteers in whom CT sections were obtained at FRC and at TLC with a positive airway pressure of 30 cm H2O. In patients, lung volumes were quantified by the analysis of the frequency distribution of CT numbers on the entire lung at zero end-expiratory pressure (ZEEP) and PEEP. In healthy volunteers at FRC, the distribution of the density histograms was monophasic with a peak at -791 ± 12 Hounsfield units (HU). The lowest CT number observed was -912 HU. At TLC, lung volume increased by 79 ± 35% and the peak CT number decreased to -886 ± 26 HU. More than 70% of the increase in lung volume was located below -900 HU, suggesting that this value can be considered as the threshold separating normal aeration from overdistension. In patients with ALI, at ZEEP the distribution of density histograms was either monophasic (n = 3) or biphasic (n = 3). The mean CT number was -319 ± 34 HU. At PEEP 13 ± 3 cm H2O, lung volume increased by 47 ± 19% whereas mean CT number decreased to -538 ± 171 HU. PEEP induced a mean alveolar recruitment of 320 ± 160 ml and a mean lung overdistension of 238 ± 320 ml. In conclusion, overdistended lung parenchyma of healthy volunteers is characterized by a CT number below -900 HU. This threshold can be used in patients with ALI for differentiating PEEP-induced alveolar recruitment from lung overdistension.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background. Intravenous injection of contrast material is routinely performed in order to differentiate nonaerated lung parenchyma from pleural effusion in critically ill patients undergoing thoracic computed tomography (CT). The aim of the present study was to evaluate the effects of contrast material on CT measurement of lung volumes in 14 patients with acute lung injury. Method. A spiral thoracic CT scan, consisting of contiguous axial sections of 10 mm thickness, was performed from the apex to the diaphragm at end-expiration both before and 30 s (group 1; n=7) or 15 min (group 2; n=7) after injection of 80 ml contrast material. Volumes of gas and tissue, and volumic distribution of CT attenuations were measured before and after injection using specially designed software (Lungview®; Institut National des Télécommunications, Evry, France). The maximal artifactual increase in lung tissue resulting from a hypothetical leakage within the lung of the 80 ml contrast material was calculated. Results. Injection of contrast material significantly increased the apparent volume of lung tissue by 83 ± 57 ml in group 1 and 102 ± 80 ml in group 2, whereas the corresponding maximal artifactual increases in lung tissue were 42 ± 52 ml and 31 ± 18 ml. Conclusion. Because systematic injection of contrast material increases the amount of extravascular lung water in patients with acute lung injury, it seems prudent to avoid this procedure in critically ill patients undergoing a thoracic CT scan and to reserve its use for specific indications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Fluctuations of estradiol and progesterone levels caused by the menstrual cycle worsen asthma symptoms. Conflicting data are reported in literature regarding pro and anti-inflammatory properties of estradiol and progesterone.Methods: Female Wistar rats were ovalbumin (OVA) sensitized 1 day after resection of the ovaries (OVx). Control group consisted of sensitized-rats with intact ovaries (Sham-OVx). Allergic challenge was performed by aerosol (OVA 1%, 15 min) two weeks later. Twenty four hours after challenge, BAL, bone marrow and total blood cells were counted. Lung tissues were used as explants, for expontaneous cytokine secretion in vitro or for immunostaining of E-selectin.Results: We observed an exacerbated cell recruitment into the lungs of OVx rats, reduced blood leukocytes counting and increased the number of bone marrow cells. Estradiol-treated OVx allergic rats reduced, and those treated with progesterone increased, respectively, the number of cells in the BAL and bone marrow. Lungs of OVx allergic rats significantly increased the E-selectin expression, an effect prevented by estradiol but not by progesterone treatment. Systemically, estradiol treatment increased the number of peripheral blood leukocytes in OVx allergic rats when compared to non treated-OVx allergic rats. Cultured-BAL cells of OVx allergic rats released elevated amounts of LTB4 and nitrites while bone marrow cells increased the release of TNF-α and nitrites. Estradiol treatment of OVx allergic rats was associated with a decreased release of TNF-α, IL-10, LTB4 and nitrites by bone marrow cells incubates. In contrast, estradiol caused an increase in IL-10 and NO release by cultured-BAL cells. Progesterone significantly increased TNF- α by cultured BAL cells and bone marrow cells.Conclusions: Data presented here suggest that upon hormonal oscillations the immune sensitization might trigger an allergic lung inflammation whose phenotype is under control of estradiol. Our data could contribute to the understanding of the protective role of estradiol in some cases of asthma symptoms in fertile ans post-menopausal women clinically observed. © 2010 de Oliveira et al; licensee BioMed Central Ltd.