407 resultados para lääketiede, kirurgia, sydänkirurgia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mediastinitis as a complication after cardiac surgery is rare but disastrous increasing the hospital stay, hospital costs, morbidity and mortality. It occurs in 1-3 % of patients after median sternotomy. The purpose of this study was to find out the risk factors and also to investigate new ways to prevent mediastinitis. First, we assessed operating room air contamination monitoring by comparing the bacteriological technique with continuous particle counting in low level contamination achieved by ultra clean garment options in 66 coronary artery bypass grafting operations. Second, we examined surgical glove perforations and the changes in bacterial flora of surgeons' fingertips in 116 open-heart operations. Third, the effect of gentamicin-collagen sponge on preventing surgical site infections (SSI) was studied in randomized controlled study with 557 participants. Finally, incidence, outcome, and risk factors of mediastinitis were studied in over 10,000 patients. With the alternative garment and textile system (cotton group and clean air suit group), the air counts fell from 25 to 7 colony-forming units/m3 (P<0.01). The contamination of the sternal wound was reduced by 46% and that of the leg wound by >90%. In only 17% operations both gloves were found unpunctured. Frequency of glove perforations and bacteria counts of hands were found to increase with operation time. With local gentamicin prophylaxis slightly less SSIs (4.0 vs. 5.9%) and mediastinitis (1.1 vs. 1.9%) occurred. We identified 120/10713 cases of postoperative mediastinitis (1.1%). During the study period, the patient population grew significantly older, the proportion of women and patients with ASA score >3 increased significantly. In multivariate logistic regression analysis, the only significant predictor for mediastinitis was obesity. Continuous particle monitoring is a good intraoperative method to control the air contamination related to the theatre staff behavior during individual operation. When a glove puncture is detected, both gloves are to be changed. Before donning a new pair of gloves, the renewed disinfection of hands will help to keep their bacterial counts lower even towards the end of long operation. Gentamicin-collagen sponge may have beneficial effects on the prevention of SSI, but further research is needed. Mediastinitis is not diminishing. Larger populations at risk, for example proportions of overweight patients, reinforce the importance of surveillance and pose a challenge in focusing preventive measures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In anisometropia, the two eyes have unequal refractive power. Anisometropia is a risk factor for amblyopia. The visual deficiencies are thought to be irreversible after the first decade of life. There is, however, accumulating evidence that neural plasticity exists also in adult brains. The aim of this study was to investigate functional outcome of excimer laser refractive surgery in adult anisometropic and visually impaired patients. Additional goal was to examine changes in the primary visual cortex (V1) using multifocal functional magnetic resonance imaging (mffMRI) after laser refractive surgery. Study I comprised of 57 anisometropic patients (anisometropia of ≥3.25 diopters) and 174 isometropic myopic subjects formed the control group. A significant improvement in best-spectacle-corrected visual acuity (BSCVA) among myopic control subjects was evident 3 months postoperatively. The improvement in BSCVA was significantly slower for anisometropic patients and the improvement appeared to persist to the end of the follow-up (24 months). In study II we found that refractive surgery may be also successfully used for iathrogenic anisometropia. In Study III we evaluated mildly visually impaired adult patients after refractive surgery. There was a statistically significant improvement in BSCVA among visually impaired patients and the difference in the mean BSCVA between visually impaired patients and isometropic myopic control subjects diminished during follow-up. Study IV was a prospective follow-up trial examining the changes in the primary visual cortex after refractive surgery. Two anisometropic patients and two isometropic myopic patients were examined with a 61-region mffMRI before refractive surgery and at three, six, nine and twelve months postoperatively. In this study, a dramatic decrease in the number of active voxels in the fovea was found among anisometropic patients. The results presented in this thesis revealed that refractive surgery may be successfully used for the treatment of anisometropic adults with both congenital and iatrogenic anisometropia and for mildly visually impaired adults. The findings in conclusion strengthen our hypothesis of plastic changes in the visual cortex of adult anisometropic and mildly visually impaired patients after refractive surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esophageal and gastroesophageal junction (GEJ) adenocarcinoma is rapidly increasing disease with a pathophysiology connected to oxidative stress. Exact pre-treatment clinical staging is essential for optimal care of this lethal malignancy. The cost-effectiviness of treatment is increasingly important. We measured oxidative metabolism in the distal and proximal esophagus by myeloperoxidase activity (MPA), glutathione content (GSH), and superoxide dismutase (SOD) in 20 patients operated on with Nissen fundoplication and 9 controls during a 4-year follow-up. Further, we assessed the oxidative damage of DNA by 8-hydroxydeoxyguanosine (8-OHdG) in esophageal samples of subjects (13 Barrett s metaplasia, 6 Barrett s esophagus with high-grade dysplasia, 18 adenocarcinoma of the distal esophagus/GEJ, and 14 normal controls). We estimated the accuracy (42 patients) and preoperative prognostic value (55 patients) of PET compared with computed tomography (CT) and endoscopic ultrasound (EUS) in patients with adenocarcinoma of the esophagus/GEJ. Finally, we clarified the specialty-related costs and the utility of either radical (30 patients) or palliative (23 patients) treatment of esophageal/GEJ carcinoma by the 15 D health-related quality-of-life (HRQoL) questionnaire and the survival rate. The cost-utility of radical treatment of esophageal/GEJ carcinoma was investigated using a decision tree analysis model comparing radical, palliative, and hypothetical new treatment. We found elevated oxidative stress ( measured by MPA) and decreased antioxidant defense (measured by GSH) after antireflux surgery. This indicates that antireflux surgery is not a perfect solution for oxidative stress of the esophageal mucosa. Elevated oxidative stress in turn may partly explain why adenocarcinoma of the distal esophagus is found even after successful fundoplication. In GERD patients, proximal esophageal mucosal anti-oxidative defense seems to be defective before and even years after successful antireflux surgery. In addition, antireflux surgery apparently does not change the level of oxidative stress in the proximal esophagus, suggesting that defective mucosal anti-oxidative capacity plays a role in development of oxidative damage to the esophageal mucosa in GERD. In the malignant transformation of Barrett s esophagus an important component appears to be oxidative stress. DNA damage may be mediated by 8-OHdG, which we found to be increased in Barrett s epithelium and in high-grade dysplasia as well as in adenocarcinoma of the esophagus/GEJ compared with controls. The entire esophagus of Barrett s patients suffers from increased oxidative stress ( measured by 8-OhdG). PET is a useful tool in the staging and prognostication of adenocarcinoma of the esophagus/GEJ detecting organ metastases better than CT, although its accuracy in staging of paratumoral and distant lymph nodes is limited. Radical surgery for esophageal/GEJ carcinoma provides the greatest benefit in terms of survival, and its cost-utility appears to be the best of currently available treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Head and neck squamous cell cancer (HNSCC) is the sixth most common cancer worldwide. Despite advances in combined modality therapy (surgery, radiotherapy, chemotherapy) the 5-year survival rate in stage III and IV disease remains at 40% - 60%. Short-range Auger-electron emitters, such as In-111 and In-114m, tagged with a drug, molecule, peptide, protein or nanoparticles brought in close proximity to nuclear DNA represent a fascinating alternative for treating cancer. In this thesis, we studied the usefulness of Indium-111-bleomycin complex (In-111-BLMC) in the diagnostics and potential therapy of HNSCC using in vitro HNSCC cell lines, in vivo nude mice, and in vivo HNSCC patients. In in vitro experiments with HNSCC cell lines, the sensitivity to external beam radiation, BLM, In-111-BLMC, and In-111-Cl3 was studied using the 96-well plate clonogenic assay. The influence of BLM and In-111-BLMC on the cell cycle was measured with flow cytometry. In in vivo nude mice xenograft studies, the activity ratios of In-111-BLMC were obtained in gamma camera images. The effect of In-111-BLMC in HNSCC xenografts was studied. In in vivo patient studies, we determined the tumor uptake of In-111-BLMC with gamma camera and the radioactivity from tumor samples using In-111-BLMC with specific activity of 75, 175, or 375 MBq/mg BLM. The S values, i.e. absorbed dose in a target organ per cumulated activity in a source organ, were simulated for In-111 and In-114m. In vitro studies showed the variation of sensitivity for external beam radiation, BLM, and In-111-BLMC between HNSCC cell lines. IC50 values for BLM were 1.6-, 1.8-, and 2.1-fold higher than In-111-BLMC (40 MBq/mg BLM) in three HNSCC cell lines. Specific In-111 activity of 40 MBq/mgBLM was more effective in killing cells than specific In-111 activity of 195MBq/mgBLM (p=0.0023). In-111-Cl3 alone had no killing effect. The percentage of cells in the G2/M phase increased after exposure to BLM and especially to In-111-BLMC in the three cell lines studied, indicating a G2/M block. The tumor-seeking behavior was shown in the in vivo imaging study of xenografted mice. BLM and In-111-BLMC were more effective than NaCl in reducing xenografted tumor size in HNSCC. The uptake ratios received from gamma images in the in vivo patient study varied from 1.2 to 2.8 in malignant tumors. However, the uptake of In-111-BLMC was unaffected by increasing the injected activity. A positive correlation existed between In-111-BLMC uptake, Ki-67/MIB activity, and number of mitoses. Regarding the S values, In-114m delivered a 4-fold absorbed radiation dose into the tumor compared with In-111, and thus, In-114m-BLMC might be more effective than In-111-BLMC at the DNA level. Auger-electron emitters, such as In-111 and In-114m, might have potential in the treatment of HNSCC. Further studies are needed to develop a radiopharmaceutical agent with appropriate physical properties of the radionuclide and a suitable carrier to bring it to the targeted tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study provides a usage-based account of how three grammatical structures, declarative content clauses, interrogative content clause and as-predicative constructions, are used in academic research articles. These structures may be used in both knowledge claims and citations, and they often express evaluative meanings. Using the methodology of quantitative corpus linguistics, I investigate how the culture of the academic discipline influences the way in which these constructions are used in research articles. The study compares the rates of occurrence of these grammatical structures and investigates their co-occurrence patterns in articles representing four different disciplines (medicine, physics, law, and literary criticism). The analysis is based on a purpose-built 2-million-word corpus, which has been part-of-speech tagged. The analysis demonstrates that the use of these grammatical structures varies between disciplines, and further shows that the differences observed in the corpus data are linked with differences in the nature of knowledge and the patterns of enquiry. The constructions in focus tend to be more frequently used in the soft disciplines, law and literary criticism, where their co-occurrence patterns are also more varied. This reflects both the greater variety of topics discussed in these disciplines, and the higher frequency of references to statements made by other researchers. Knowledge-building in the soft fields normally requires a careful contextualisation of the arguments, giving rise to statements reporting earlier research employing the constructions in focus. In contrast, knowledgebuilding in the hard fields is typically a cumulative process, based on agreed-upon methods of analysis. This characteristic is reflected in the structure and contents of research reports, which offer fewer opportunities for using these constructions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tutkielmani tarkastelee käsityksiä ruumiista englantilaisessa kulttuurissa n. 1700-1780. Ruumiin historia on varsin uusi historiantutkimuksen ala ja sitä on leimannut feministinen tutkimusote, joka on keskittynyt diskurssiin naisen ruumiista ja seksuaalisuudesta. Itse kuitenkin lähestyn ruumista sen sivuutetun ulottuvuuden, ruumiineritteiden, kautta ja yhdistän käsitykset myös toiminnan tasolle. Tarkastelen erittävää ruumiista kulttuurihistoriallisesti sijoittamalla sen kahteen 1700-luvulla merkittävään kontekstiin: lääketieteeseen ja kohteliaisuuskulttuuriin. Tällä pyrin paitsi avaamaan ruumiiseen ja ruumiineritteisiin liittyvien käsitysten kirjoa myös osoittamaan näiden kahden kontekstin väliset vuorovaikutussuhteet. Lääketieteen ja kohteliaisuuskulttuurin puitteissa käsittelen erittävää ruumista mahdollisimman kokonaisvaltaisesti niin fysiologian, terveydenhoidon, hajujen, hy­gienian, aineellisen kulttuurin kuin sosiaalisten suhteiden kannalta, käyttäen lähteinäni mm. lääketieteellisiä tekstejä, kaunokirjallisuutta, matkakertomuksia, päiväkirjoja, kirjeitä, lehtiä ja muuta kohteliasta kirjallisuutta. Käsitykset erittävästä ruumiista osoittautuvat moninaisiksi, jopa ristiriitaisiksi. Toi­saalta lääketiede korostaa ruumiin avoimuutta ja eritteiden vapautta, toisaalta kohteliaisuus vaatii ruumiintoimintojen suhteen pidättyväisyyttä. Tämän moninai­suuden pohjalta kritisoin mm. Norbert Eliaksen sivilisaatioteoriaa ja osoitan näiden vastakkaisten käsitysten tilannesidonnaisuuden, joka mahdollistaa nii­den samanaikaisen olemassaolon. Kohteliaat herrasmiehet ja -naiset ovatkin kovin kiinnostuneita erittävistä ruumiistaan: ihmiset tarkkailevat eritteitään saadakseen tietoa ruumiin sisältä sekä toisten eritteitä karsiakseen kaiken eläimellisen ympäriltään ja kaunokirjallisuudessa ne ovat naurun ja huvituksen lähde. Vuorovai­kutus lääketieteellisen ja kohteliaan kulttuurin välillä osoittautuukin varsin tiiviiksi: kohteliaisuuden takana vaikuttavat periaatteet näkyvät myös lääketieteessä ja toisaalta lääketiede tunkeutuu mm. kohteliaaseen kieleen, hämärtäen näin kontekstien välistä rajaa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advanced stage head and neck cancers (HNC) with distant metastasis, as well as prostate cancers (PC), are devastating diseases currently lacking efficient treatment options. One promising developmental approach in cancer treatment is the use of oncolytic adenoviruses, especially in combination therapy with conventional cancer therapies. The safety of the approach has been tested in many clinical trials. However, antitumor efficacy needs to be improved in order to establish oncolytic viruses as a viable treatment alternative. To be able to test in vivo the effects on anti-tumor efficiency of a multimodal combination therapy of oncolytic adenoviruses with the standard therapeutic combination of radiotherapy, chemotherapy and Cetuximab monoclonal antibody (mAb), a xenograft HNC tumor model was developed. This model mimics the typical clinical situation as it is initially sensitive to cetuximab, but resistance develops eventually. Surprisingly, but in agreement with recent findings for chemotherapy and radiotherapy, a higher proportion of cells positive for HNC cancer stem cell markers were found in the tumors refractory to cetuximab. In vitro as well as in vivo results found in this study support the multimodal combination therapy of oncolytic adenoviruses with chemotherapy, radiotherapy and monoclonal antibody therapy to achieve increased anti-tumor efficiency and even complete tumor eradication with lower treatment doses required. In this study, it was found that capsid modified oncolytic viruses have increased gene transfer to cancer cells as well as an increased antitumor effect. In order to elucidate the mechanism of how oncolytic viruses promote radiosensitization of tumor cells in vivo, replicative deficient viruses expressing several promising radiosensitizing viral proteins were tested. The results of this study indicated that oncolytic adenoviruses promote radiosensitization by delaying the repair of DNA double strand breaks in tumor cells. Based on the promising data of the first study, two tumor double-targeted oncolytic adenoviruses armed with the fusion suicide gene FCU1 or with a fully human mAb specific for human Cytotoxic T Lymphocyte-Associated Antigen 4 (CTLA-4) were produced. FCU1 encodes a bifunctional fusion protein that efficiently catalyzes the direct conversion of 5-FC, a relatively nontoxic antifungal agent, into the toxic metabolites 5-fluorouracil and 5-fluorouridine monophosphate, bypassing the natural resistance of certain human tumor cells to 5-fluorouracil. Anti-CTLA4 mAb promotes direct killing of tumor cells via apoptosis and most importantly immune system activation against the tumors. These armed oncolytic viruses present increased anti-tumor efficacy both in vitro and in vivo. Furthermore, by taking advantage of the unique tumor targeted gene transfer of oncolytic adenoviruses, functional high tumor titers but low systemic concentrations of the armed proteins were generated. In addition, supernatants of tumor cells infected with Ad5/3-24aCTLA4, which contain anti-CTLA4 mAb, were able to effectively immunomodulate peripheral blood mononuclear cells (PBMC) of cancer patients with advanced tumors. -- In conclusion, the results presented in this thesis suggest that genetically engineered oncolytic adenoviruses have great potential in the treatment of advanced and metastatic HNC and PC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is the second most common neurodegenerative disease among the elderly. Its etiology is unknown and no disease-modifying drugs are available. Thus, more information concerning its pathogenesis is needed. Among other genes, mutated PTEN-induced kinase 1 (PINK1) has been linked to early-onset and sporadic PD, but its mode of action is poorly understood. Most animal models of PD are based on the use of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP is metabolized to MPP+ by monoamine oxidase B (MAO B) and causes cell death of dopaminergic neurons in the substantia nigra in mammals. Zebrafish has been a widely used model organism in developmental biology, but is now emerging as a model for human diseases due to its ideal combination of properties. Zebrafish are inexpensive and easy to maintain, develop rapidly, breed in large quantities producing transparent embryos, and are readily manipulated by various methods, particularly genetic ones. In addition, zebrafish are vertebrate animals and results derived from zebrafish may be more applicable to mammals than results from invertebrate genetic models such as Drosophila melanogaster and Caenorhabditis elegans. However, the similarity cannot be taken for granted. The aim of this study was to establish and test a PD model using larval zebrafish. The developing monoaminergic neuronal systems of larval zebrafish were investigated. We identified and classified 17 catecholaminergic and 9 serotonergic neuron populations in the zebrafish brain. A 3-dimensional atlas was created to facilitate future research. Only one gene encoding MAO was found in the zebrafish genome. Zebrafish MAO showed MAO A-type substrate specificity, but non-A-non-B inhibitor specificity. Distribution of MAO in larval and adult zebrafish brains was both diffuse and distinctly cellular. Inhibition of MAO during larval development led to markedly elevated 5-hydroxytryptamine (serotonin, 5-HT) levels, which decreased the locomotion of the fish. MPTP exposure caused a transient loss of cells in specific aminergic cell populations and decreased locomotion. MPTP-induced changes could be rescued by the MAO B inhibitor deprenyl, suggesting a role for MAO in MPTP toxicity. MPP+ affected only one catecholaminergic cell population; thus, the action of MPP+ was more selective than that of MPTP. The zebrafish PINK1 gene was cloned in zebrafish, and morpholino oligonucleotides were used to suppress its expression in larval zebrafish. The functional domains and expression pattern of zebrafish PINK1 resembled those of other vertebrates, suggesting that zebrafish is a feasible model for studying PINK1. Translation inhibition resulted in cell loss of the same catecholaminergic cell populations as MPTP and MPP+. Inactivation of PINK1 sensitized larval zebrafish to subefficacious doses of MPTP, causing a decrease in locomotion and cell loss in one dopaminergic cell population. Zebrafish appears to be a feasible model for studying PD, since its aminergic systems, mode of action of MPTP, and functions of PINK1 resemble those of mammalians. However, the functions of zebrafish MAO differ from the two forms of MAO found in mammals. Future studies using zebrafish PD models should utilize the advantages specific to zebrafish, such as the ability to execute large-scale genetic or drug screens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atherosclerosis is a disease of the arteries; its characteristic features include chronic inflammation, extra- and intracellular lipid accumulation, extracellular matrix remodeling, and an increase in extracellular matrix volume. The underlying mechanisms in the pathogenesis of advanced atherosclerotic plaques, that involve local acidity of the extracellular fluid, are still incompletely understood. In this thesis project, my co-workers and I studied the different mechanisms by which local extracellular acidity could promote accumulation of the atherogenic apolipoprotein B-100 (apoB-100)-containing plasma lipoprotein particles in the inner layer of the arterial wall, the intima. We found that lipolysis of atherogenic apoB-100-containing plasma lipoprotein particles (LDL, IDL, and sVLDL) by the secretory phospholipase A2 group V (sPLA2-V) enzyme, was increased at acidic pH. Also, the binding of apoB-100-containing plasma lipoprotein particles to human aortic proteoglycans was dramatically enhanced at acidic pH. Additionally, lipolysis by sPLA2-V enzyme further increased this binding. Using proteoglycan-affinity chromatography, we found that sVLDL lipoprotein particles consist of populations, differing in their affinities toward proteoglycans. These populations also contained different amounts of apolipoprotein E (apoE) and apolipoprotein C-III (apoC-III); the amounts of apoC-III and apoE per particle were highest in the population with the lowest affinity toward proteoglycans. Since PLA2-modification of LDL particles has been shown to change their aggregation behavior, we also studied the effect of acidic pH on the monolayer structure covering lipoprotein particles after PLA2-induced hydrolysis. Using molecular dynamics simulations, we found that, in acidity, the monolayer is more tightly packed laterally; moreover, its spontaneous curvature is negative, suggesting that acidity may promote lipoprotein particles fusion. In addition to extracellular lipid accumulation, the apoB-100-containing plasma lipoprotein particles can be taken up by inflammatory cells, namely macrophages. Using radiolabeled lipoprotein particles and cell cultures, we showed that sPLA2-V-modification of LDL, IDL, and sVLDL lipoproteins particles, at neutral or acidic pH, increased their uptake by human monocyte-derived macrophages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The central nervous system (CNS) is the most cholesterol-rich organ in the body. Cholesterol is essential to CNS functions such as synaptogenesis and formation of myelin. Significant differences exist in cholesterol metabolism between the CNS and the peripheral organs. However, the regulation of cholesterol metabolism in the CNS is poorly understood compared to our knowledge of the regulation of cholesterol homeostasis in organs reached by cholesterol-carrying lipoprotein particles in the circulation. Defects in CNS cholesterol homeostasis have been linked to a variety of neurodegenerative diseases, including common diseases with complex pathogenetic mechanisms such as Alzheimer s disease. In spite of intense effort, the mechanisms which link disturbed cholesterol homeostasis to these diseases remain elusive. We used three inherited recessive neurodegenerative disorders as models in the studies included in this thesis: Niemann-Pick type C (NPC), infantile neuronal ceroid lipofuscinosis and cathepsin D deficiency. Of these three, NPC has previously been linked to disturbed intracellular cholesterol metabolism. Elucidating the mechanisms with which disturbances of cholesterol homeostasis link to neurodegeneration in recessive inherited disorders with known genetic lesions should shed light on how cholesterol is handled in the healthy CNS and help to understand how these and more complex diseases develop. In the first study we analyzed the synthesis of sterols and the assembly and secretion of lipoprotein particles in Npc1 deficient primary astrocytes. We found that both wild type and Npc1 deficient astrocytes retain significant amounts of desmosterol and other cholesterol precursor sterols as membrane constituents. No difference was observed in the synthesis of sterols and the secretion of newly synthesized sterols between Npc1 wild type, heterozygote or knockout astrocytes. We found that the incorporation of newly synthesized sterols into secreted lipoprotein particles was not inhibited by Npc1 mutation, and the lipoprotein particles were similar to those excreted by wild type astrocytes in shape and size. The bulk of cholesterol was found to be secreted independently of secreted NPC2. These observations demonstrate the ability of Npc1 deficient astrocytes to handle de novo sterols, and highlight the unique sterol composition in the developing brain. Infantile neuronal ceroid lipofuscinosis is caused by the deficiency of a functional Ppt1 enzyme in the cells. In the second study, global gene expression studies of approximately 14000 mouse genes showed significant changes in the expression of 135 genes in Ppt1 deficient neurons compared to wild type. Several genes encoding for enzymes of the mevalonate pathway of cholesterol biosynthesis showed increased expression. As predicted by the expression data, sterol biosynthesis was found to be upregulated in the knockout neurons. These data link Ppt1 deficiency to disturbed cholesterol metabolism in CNS neurons. In the third study we investigated the effect of cathepsin D deficiency on the structure of myelin and lipid homeostasis in the brain. Our proteomics data, immunohistochemistry and western blotting data showed altered levels of the myelin protein components myelin basic protein, proteolipid protein and 2 , 3 -cyclic nucleotide 3 phosphodiesterase in the brains of cathepsin D deficient mice. Electron microscopy revealed altered myelin structure in cathepsin D deficient brains. Additionally, plasmalogen-derived alkenyl chains and 20- and 24-carbon saturated and monounsaturated fatty acids typical for glycosphingolipids were found to be significantly reduced, but polyunsaturated species were significantly increased in the knockout brains, pointing to a decrease in white matter. The levels of ApoE and ABCA1 proteins linked to cholesterol efflux in the CNS were found to be altered in the brains of cathepsin D deficient mice, along with an accumulation of cholesteryl esters and a decrease in triglycerols. Together these data demonstrate altered myelin architecture in cathepsin D deficient mice and link cathepsin D deficiency to aberrant cholesterol metabolism and trafficking. Basic research into rare monogenic diseases sheds light on the underlying biological processes which are perturbed in these conditions and contributes to our understanding of the physiological function of healthy cells. Eventually, understanding gained from the study of disease models may contribute towards establishing treatment for these disorders and further our understanding of the pathogenesis of other, more complex and common diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glaucoma is a multifactorial long-term ocular neuropathy associated with progressive loss of the visual field, retinal nerve fiber structural abnormalities and optic disc changes. Like arterial hypertension it is usually a symptomless disease, but if left untreated leads to visual disability and eventual blindness. All therapies currently used aim to lower intraocular pressure (IOP) in order to minimize cell death. Drugs with new mechanisms of action could protect glaucomatous eyes against blindness. Renin-angiotensin system (RAS) is known to regulate systemic blood pressure and compounds acting on it are in wide clinical use in the treatment of hypertension and heart failure but not yet in ophthalmological use. There are only few previous studies concerning intraocular RAS, though evidence is accumulating that drugs antagonizing RAS can also lower IOP, the only treatable risk factor in glaucoma. The main aim of this experimental study was to clarify the expression of the renin-angiotensin system in the eye tissues and to test its potential oculohypotensive effects and mechanisms. In addition, the possible relationship between the development of hypertension and IOP was evaluated in animal models. In conclusion, a novel angiotensin receptor type (Mas), as well as ACE2 enzyme- producing agonists for Mas, were described for the first time in the eye structures participating in the regulation of IOP. In addition, a Mas receptor agonist significantly reduced even normal IOP. The effect was abolished by a specific receptor antagonist. Intraocular, local RAS would thus to be involved in the regulation of IOP, probably even more in pathological conditions such as glaucoma though there was no unambiguous relationship between arterial and ocular hypertension. The findings suggest the potential as antiglaucomatous drugs of agents which increase ACE2 activity and the formation of angiotensin (1-7), or activate Mas receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Total hip replacement is the golden standard treatment for severe osteoarthritis refractory for conservative treatment. Aseptic loosening and osteolysis are the major long-term complications after total hip replacement. Foreign body giant cells and osteoclasts are locally formed around aseptically loosening implants from precursor cells by cell fusion. When the foreign body response is fully developed, it mediates inflammatory and destructive host responses, such as collagen degradation. In the present study, it was hypothesized that the wear debris and foreign body inflammation are the forces driving local osteoclast formation, peri-implant bone resorption and enhanced tissue remodeling. Therefore the object was to characterize the eventual expression and the role of fusion molecules, ADAMs (an abbreviation for A Disintegrin And Metalloproteinase, ADAM9 and ADAM12) in the fusion of progenitor cells into multinuclear giant cells. For generation of such cells, activated macrophages trying to respond to foreign debris play an important role. Matured osteoclasts together with activated macrophages mediate bone destruction by secreting protons and proteinases, including matrix metalloproteinases (MMPs) and cathepsin K. Thus this study also assessed collagen degradation and its relationship to some of the key collagenolytic proteinases in the aggressive synovial membrane-like interface tissue around aseptically loosened hip replacement implants. ADAMs were found in the interface tissues of revision total hip replacement patients. Increased expression of ADAMs at both transcriptional and translational levels was found in synovial membrane-like interface tissue of revision total hip replacement (THR) samples compared with that in primary THR samples. These studies also demonstrate that multinucleate cell formation from monocytes by stimulation with macrophage-colony stimiulating factor (M-CSF) and receptor activator of nuclear factor kappa B ligand (RANKL) is characterized by time dependent changes of the proportion of ADAMs positive cells. This was observed both in the interface membrane in patients and in two different in vitro models. In addition to an already established MCS-F and RANKL driven model, a new virally (parainfluenza 2) driven model (of human salivary adenocarcinoma (HSY) cells or green monkey kidney (GMK) cells) was developed to study various fusion molecules and their role in cell fusion in general. In interface membranes, collagen was highly degraded and collagen degradation significantly correlated with the number of local cells containing collagenolytic enzymes, particularly cathepsin K. As a conclusion, fusion molecules ADAM9 and ADAM12 seem to be dynamically involved in cell-cell fusion processes and multinucleate cell formation. The highly significant correlation between collagen degradation and collagenolytic enzymes, particularly cathepsin K, indicates that the local acidity of the interface membrane in the pathologic bone and soft tissue destruction. This study provides profound knowledge about cell fusion and mechanism responsible for aseptic loosening as well as increases knowledge helpful for prevention and treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiovascular diseases (CVD) are a major cause of death and disability in Western countries and a growing health problem in the developing world. The genetic component of both coronary heart disease (CHD) and ischemic stroke events has been established in twin studies, and the traits predisposing to CVD, such as hypertension, dyslipidemias, obesity, diabetes, and smoking behavior, are all partly hereditary. Better understanding of the pathophysiology of CVD-related traits could help to target disease prevention and clinical treatment to individuals at an especially high disease risk and provide novel pharmaceutical interventions. This thesis aimed to clarify the genetic background of CVD at a population level using large Nordic population cohorts and a candidate gene approach. The first study concentrated on the allelic diversity of the thrombomodulin (THBD) gene in two Finnish cohorts, FINRISK-92 and FINRISK-97. The results from this study implied that THBD variants do not substantially contribute to CVD risk. In the second study, three other candidate genes were added to the analyses. The study investigated the epistatic effects of coagulation factor V (F5), intercellular adhesion molecule -1 (ICAM1), protein C (PROC), and THBD in the same FINRISK cohorts. The results were encouraging; we were able to identify several single SNPs and SNP combinations associating with CVD and mortality. Interestingly, THBD variants appeared in the associating SNP combinations despite the negative results from Study I, suggesting that THBD contributes to CVD through gene-gene interactions. In the third study, upstream transcription factor -1 (USF1) was analyzed in a cohort of Swedish men. USF1 was associated with metabolic syndrome, characterized by accumulation of different CVD risk factors. A putative protective and a putative risk variant were identified. A direct association with CVD was not observed. The longitudinal nature of the study also clarified the effect of USF1 variants on CVD risk factors followed in four examinations throughout adulthood. The three studies provided valuable information on the study of complex traits, highlighting the use of large study samples, the importance of replication, and the full coverage of the major allelic variants of the target genes to assure reliable findings. Although the genetic basis of coronary heart disease and ischemic stroke remains unknown, single genetic findings may facilitate the recognition of high-risk subgroups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In cancer, a subpopulation of malignant cells expresses markers of normal stem cells. These cells have the potential of initiating tumor growth and therefore also tumor recurrence. Thus, these cells are called cancer stem cells. A myriad of markers have been applied to identify these cells, but no single marker can be found exclusively in cancer stem cells. In many types of cancer, clinical recurrence and tumor progression are the main causes of mortality, despite intense oncological treatment. It has been proposed that the presence of cancer stem cells causes this resistance to therapy. The scope of this thesis is to investigate the role of stem cell markers and genes in the clinical setting. Especially, the aim was to elucidate the clinical significance of stem cell markers as novel prognostic and diagnostic tools in cancer. Tumor biopsy material from central nervous system tumors (oligodendroglioma, astrocytoma and glioblatoma), neural crest derived tumors (pheochromocytomas) and oral carcinoma was screened for stem cell markers. Initially, 15 stem cell markers were screened in a test series of gliomas. The markers applied for expanded tumor analyses (in 305 cases of glioma, 42 cases of pheochromocytoma, and 73 cases of oral carcinoma) were BMI-1, Snail, p16, mdm2, and c-Myc. Data on marker expression was compared with clinical and pathological parameters. In gliomas, BMI-1 expression was found in nearly all tumors analyzed, but the frequency of BMI-1 expressing cells was highly variable, ranging from 1 to 100%. In oligodendroglioma, BMI-1 expression was identified as a prognostic marker independent of tumor grade and clinical parameters. In pheochromocytoma, Snail expression was shown to distinguish between the metastatic and non-metastatic forms of the tumor. Snail expression was seen only in metastatic tumors, whereas non-metastatic tumors did not commonly express Snail. Finally, in oral carcinoma, BMI-1 expression was seen in roughly 80% of tumors, and Snail expression was high or very high in all cases. The lack of BMI-1 expression was associated with early relapse in oral carcinoma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell division, which leads to the birth of two daughter cells, is essential for the growth and development of all organisms. The reproduction occurs in a series of events separated in time, designated as the cell cycle. The cell cycle progression is controlled by the activity of cyclin-dependent kinases (CDK). CDKs pair with cyclins to become catalytically active and phosphorylate a broad range of substrates required for cell cycle progression. In addition to cyclins, CDKs are regulated by inhibitory and activating phosphorylation events, binding to CDK-inhibitory proteins (CKI), and also by subcellular localization. The control of the CDK activity is crucial in preventing unscheduled progression of the cell cycle with mistakes having potentially hazardous consequences, such as uncontrolled proliferation of the cells, a hallmark of cancer. The mammalian cell cycle is a target of several DNA tumor viruses that can deregulate the host s cell cycle with their viral oncoproteins. A human herpesvirus called Kaposi s sarcoma herpesvirus (KSHV) is implicated in the cause of Kaposi s sarcoma (KS) and lymphoproliferative diseases such as primary effusion lymphomas (PEL). KSHV has pirated several cell cycle regulatory genes that it uses to manipulate its host cell and to induce proliferation. Among these gene products is a cellular cyclin D homologue, called viral cyclin (v-cyclin) that can activate cellular CDKs leading to the phosphorylation of multiple target proteins. Intriguingly, PELs that are naturally infected with KSHV consistently express high levels of CDK inhibitor protein p27Kip1 and still proliferate actively. The aim of this study was to investigate v-cyclin complexes and their activity in PELs, and search for an explanation why CKIs, such as p27Kip1 and p21Cip1 are unable to inhibit cell proliferation in this type of lymphoma. In this study, we found that v-cyclin binds to p27Kip1 in PELs, and confirmed this novel interaction also in the overexpression models. We observed that p27Kip1 associated with v-cyclin was also phosphorylated by a v-cyclin-associated kinase and identified cellular CDK6 as the major kinase partner of v-cyclin responsible for this phosphorylation. Analysis of the p27Kip1 residues targeted by v-cyclin-CDK6 revealed that serine 10 (S10) is the major phosphorylation site during the latent phase of the KSHV replication cycle. This phosphorylation led to the relocalization of p27Kip1 to the cytoplasm, where it is unable to inhibit nuclear cyclin-CDK complexes. In the lytic phase of the viral replication cycle, the preferred phosphorylation site on p27Kip1 by v-cyclin-CDK6 changed to threonine 187 (T187). T187 phosphorylation has been shown to lead to ubiquitin-mediated degradation of p27Kip1 and downregulation of p27Kip1 was also observed here. v-cyclin was detected also in complex with p21Cip1, both in overexpression models and in PELs. Phosphorylation of p21Cip1 on serine 130 (S130) site by v-cyclin-CDK6 functionally inactivated p21Cip1 and led to the circumvention of G1 arrest induced by p21Cip1. Moreover, p21Cip1 phosphorylated by v-cyclin-associated kinase showed reduced binding to CDK2, which provides a plausible explanation why p21Cip1 is unable to inhibit cell cycle progression upon v-cyclin expression. Our findings clarify the mechanisms on how v-cyclin evades the inhibition of cell cycle inhibitors and suggests an explanation to the uncontrolled proliferation of KSHV-infected cells.