966 resultados para interleukin 12p40


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemotherapy-induced interleukin-8 (IL-8) signaling reduces the sensitivity of prostate cancer cells to undergo apoptosis. In this study, we investigated how endogenous and drug-induced IL-8 signaling altered the extrinsic apoptosis pathway by determining the sensitivity of LNCaP and PC3 cells to administration of the death receptor agonist tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TRAIL induced concentration-dependent decreases in LNCaP and PC3 cell viability, coincident with increased levels of apoptosis and the potentiation of IL-8 secretion. Administration of recombinant human IL-8 was shown to increase the mRNA transcript levels and expression of c+FLIPL and c-FLIPS, two isoforms of the endogenous caspase-8 inhibitor. Pretreatment with the CXCR2 antagonist AZ10397767 significantly attenuated IL-8-induced c-FLIP mRNA up-regulation whereas inhibition of androgen receptor- and/or nuclear factor-kappa B-mediated transcription attenuated IL-8-induced c-FLIP expression in LNCaP and PC3 cells, respectively. Inhibition of c-FLIP expression was shown to induce spontaneous apoptosis in both cell lines and to sensitize these prostate cancer cells to treatment with TRAIL, oxaliplatin, and docetaxel. Coadministration of AZ10397767 also increased the sensitivity of PC3 cells to the apoptosis-inducing effects of recombinant TRAIL, most likely due to the ability of this antagonist to block TRAIL- and IL-8-induced up-regulation of c-FLIP in these cells. We conclude that endogenous and TRAIL-induced IL-8 signaling can modulate the extrinsic apoptosis pathway in prostate cancer cells through direct transcriptional regulation of c-FLIP. Therefore, targeted inhibition of IL-8 signaling or c-FLIP expression in prostate cancer may be an attractive therapeutic strategy to sensitize this stage of disease to chemotherapy.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Interleukin-17A (IL-17A) is the founding member of a novel family of inflammatory cytokines that plays a critical role in the pathogenesis of many autoimmune diseases, including multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). IL-17A signals through its receptor, IL-17RA, which is expressed in many peripheral tissues; however, expression of IL-17RA in the central nervous system (CNS) and its role in CNS inflammation are not well understood. Methods: EAE was induced in C57Bl/6 mice by immunization with myelin oligodendroglial glycoprotein. IL-17RA expression in the CNS was compared between control and EAE mice using RT-PCR, in situ hybridization, and immunohistochemistry. Cell-type specific expression was examined in isolated astrocytic and microglial cell cultures. Cytokine and chemokine production was measured in IL-17A treated cultures to evaluate the functional status of IL-17RA. Results: Here we report increased IL-17RA expression in the CNS of mice with EAE, and constitutive expression of functional IL-17RA in mouse CNS tissue. Specifically, astrocytes and microglia express IL-17RA in vitro, and IL-17A treatment induces biological responses in these cells, including significant upregulation of MCP-1, MCP-5, MIP-2 and KC chemokine secretion. Exogenous IL-17A does not significantly alter the expression of IL-17RA in glial cells, suggesting that upregulation of chemokines by glial cells is due to IL-17A signaling through constitutively expressed IL-17RA. Conclusion: IL-17RA expression is significantly increased in the CNS of mice with EAE compared to healthy mice, suggesting that IL-17RA signaling in glial cells can play an important role in autoimmune inflammation of the CNS and may be a potential pathway to target for therapeutic interventions. © 2009 Sarma et al; licensee BioMed Central Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In asthma there is increased expression of the Th2-type cytokine interleukin-4 (IL-4). IL-4 is important in immunoglobulin isotype switching to immunoglobulin E and adhesion of eosinophils to endothelium.

Objectives: We hypothesized that levels of IL-4 in bronchoalveolar lavage (BAL) fluid would be increased in stable, atopic asthmatic children compared with controls and that levels of its physiologic inhibitor IL-4 soluble receptor α (IL-4sRα) would be correspondingly decreased.

Methods: One hundred sixteen children attending a children's hospital for elective surgery were recruited. A nonbronchoscopic BAL was performed, and IL-4 and IL-4sRα were measured in the BAL supernatants.

Results: There was no significant difference in IL-4 concentrations between atopic asthmatic children, atopic normal controls, and nonatopic normal controls [0.13 pg/mL (0.13 to 0.87) vs 0.13 pg/mL (0.13 to 0.41) vs 0.13 pg/mL (0.13 to 0.5), P = 0.65]. IL-4sRα levels were significantly increased in asthmatic patients compared with atopic controls [6.4 pg/mL (5.0 to 25.5) vs 5.0 pg/mL (5.0 to 9.9), P = 0.018], but not when compared with the nonatopic controls [5.2 pg/mL (5.0 to 10.6), P = 0.19].

Conclusions: Contrary to expectation, IL-4sRα levels are increased in BAL from stable asthmatic children compared with nonatopic controls, and we speculate that IL-4sRα is released by inflammatory cells in the airways to limit the proinflammatory effects of IL-4.