998 resultados para glucose


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The determination of glucose is possible with the enzymatic reaction of glucose oxidase and potentiometric detection. The signal is proportional to the concentration up to 50 mg/dl. This value is fixed by the concentration of oxygen in the sample. By adding catalase, concentrations up to 2000 mg/dl are detectable. The steepness of the calibration curve is not affected by oxygen concentrations greater than 4 mg/l. In contrast to amperometric sensors, an influence of deposits on the electrodes surface on the signal cannot be found with potentiometric sensors

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High levels of available nitrogen (N) and carbon (C) have the potential to increase soil N and C mineralization We hypothesized that with an external labile C or N supply alpine meadow soil will have a significantly higher C mineralization potential and that temperature sensitivity of C mineralization will increase To test the hypotheses an incubation experiment was conducted with two doses of N or C supply at temperature of 5 15 and 25 C Results showed external N supply had no significant effect on CO2 emission However external C supply increased CO2 emission Temperature coefficient (Q(10)) ranged from 113 to 1 29 Significantly higher values were measured with C than with N addition and control treatment Temperature dependence of C mineralization was well-represented by exponential functions Under the control CO2 efflux rate was 425 g CO2-Cm-2 year(-1) comparable to the in situ measurement of 422 g CO2-Cm-2 year(-1) We demonstrated if N is disregarded microbial decomposition is primarily limited by lack of labile C It is predicted that labile C supply would further increase CO2 efflux from the alpine meadow soil (C) 2010 Elsevier Masson SAS All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A NADH and glucose biosensor based on thionine cross-linked multiwalled carbon nanotubes (MWNTs) and Au nanoparticles (Au NPs) multilayer functionalized indium-doped tin oxide (ITO) electrode were presented in this paper. The effect of light irradiation on the enhancement of bioelectrocatalytic processes of the biocatalytic systems by the photovoltaic effect was investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multilayer film of laccase, poly-L-lysine (PLL) and multi-walled carbon nanotubes (MWNTs) were prepared by a layer-by-layer self-assembly technique. The results of the UV-vis spectroscopy and scanning electron microscopy studies demonstrated a uniform growth of the multilayer. The catalytic behavior of the modified electrode was investigated. The (MWNTs/PLL/laccase)(n) multilayer modified electrode catalyzed four-electron reduction of O-2 to water, without any mediator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial enzyme mimetics are a current research interest because natural enzymes bear some serious disadvantages, such as their catalytic activity can be easily inhibited and they can be digested by proteases. A very recently study reported by Yan et al. has proven that Fe3O4 magnetic nanoparticles (MNPs) exhibit an intrinsic enzyme mimetic activity similar to that found in natural peroxidases, though MNPs are usually thought to be biological and chemical inert (Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S.; Yan, X. Y. Nat. Nanotechnol. 2007, 2, 577-583).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we attempt to develop a sensitive detection method for glucose with the combination of the unique optical property of quantum dots and the specificity of enzymatic reactions. With glucose and hydroquinone as substrates, benzoquinone that intensively quenches the photoluminescence of quantum dots can be produced via the catalysis of bienzyme (glucose oxidase and horseradish peroxidase) system. A relatively low detection limit of 1.0 x 10(-8) mol/L can be achieved. Two linear ranges from 1.0 x 10(-6) to 1.5 x 10(-4) M and from 1.5 x 10(-4) to 1.0 x 10(-3) M were obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biosensing application of single-walled carbon nanohorns (SWCNHs) was demonstrated through fabrication of an amperometric glucose biosensor. The biosensor was constructed by encapsulating glucose oxidase in the Nafion-SWCNHs composite film. The cyclic voltammograms for glucose oxidase immobilized on the composite film displayed a pair of well-defined and nearly symmetric redox peaks with a formal potential of -0.453V. The biosensor had good electrocatalytic activity toward oxidation of glucose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electrochemiluminescent glucose biosensor was proposed based on gold nanoparticle-catalyzed luminol electrochemiluminescence (ECL). Gold nanoparticles were self-assembled onto silica sol-gel network, and then glucose oxidase was adsorbed on the surface of gold nanoparticles. The surface assembly process and the electrochemistry and ECL behaviors of the biosensor were investigated. The assembled gold nanoparticles could efficiently electrocatalyze luminol ECL ECL intensity of the biosensor depended on scan rate, luminol concentration, and size of gold nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel glucose biosensor based on immobilization of glucose oxidase (GOD) in thin films of polyethylenimine-functionalized ionic liquid (PFIL), containing a mixture of carbon nanotubes (CNT) and gold nanoparticles (AuNPs) and deposited on glassy carbon electrodes, was developed. Direct electrochemistry of glucose oxidase in the film was observed, with linear glucose response up to 12 mM. The PFIL-stabilized gold nanoparticles had a diameter of 2.4 +/- 0.8 nm and exhibited favorable stability (stored even over one month with invisible change in UV-vis spectroscopic measurements).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel nonenzymatic glucose sensor was developed based on the renewable Ni nanoparticle-loaded carbon nanofiber paste (NiCFP) electrode. The NiCF nanocomposite was prepared by combination of electrospinning technique with thermal treatment method. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that large amounts of spherical nanoparticles were well dispersed on the surface or embedded in the carbon nanofibers. And the nanoparticles were composed of Ni and NiO, as revealed by energy dispersive X-ray spectroscopy (EDX) and X-ray powder diffraction (XRD). In application to nonenzymatic glucose determination, the renewable NiCFP electrodes, which were constructed by simply mixing the electrospun nanocomposite with mineral oil, exhibited strong and fast amperometric response without being poisoned by chloride ions. Low detection limit of 1 mu M with wide linear range from 2 mu M to 2.5 mM (R = 0.9997) could be obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, it was found that glucose oxidase (GOD) has been stably immobilized on glassy carbon electrode modified with mesoporous carbon FDU-15 (MC-FDU-15) and Nafion by simple technique. The sorption behavior of GOD immobilized on MC-FDU-15 matrix was characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-vis), FTIR, respectively, which demonstrated that MC-FDU-15 could facilitate the electron exchange between the active center of GOD and electrode. The direct electrochemistry and electrocatalysis behavior of GOD on the modified electrode were characterized by cyclic voltammogram (CV) which indicated that GOD immobilized on Nafion and MC-FDU-15 matrices display direct, reversible and surface-controlled redox reaction with an enhanced electron transfer rate constant of 4.095 s(-1) in 0.1 M phosphate buffer solution (PBS) (pH 7.12).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, it was found that glucose oxidase (GOD) has been stably immobilized on glassy carbon electrode modified by ordered mesoporous silica-SBA-15 and Nafion. The sorption behavior of GOD immobilized on SBA-15 matrix was characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-vis), FTIR, respectively, which demonstrated that SBA-15 can facilitate the electron exchange between the electroactive center of GOD and electrode. The direct electrochemistry and electrocatalysis behavior of GOD on modified electrode were characterized by cyclic voltammogram (CV) which indicated that GOD immobilized on Nafion and SBA-15 matrices displays direct, nearly reversible and surface-controlled redox reaction with an enhanced electron transfer rate constant of 3.89 s(-1) in 0.1 M phosphate buffer solution (PBS) (pH 7.12).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiwalled carbon nanotubes@SnO2-Au (MWCNTs@SnO2-Au) composite was synthesized by a chemical route. The structure and composition of the MWCNTs@SnO2-Au composite were confirmed by means of transmission electron microscopy, X-ray photoelectron and Raman spectroscopy. Due to the good electrocatalytic property of MWCNTs@SnO2-Au composite, a glucose biosensor was constructed by absorbing glucose oxidase (GOD) on the hybrid material. A direct electron transfer process is observed at the MWCNTs@SnO2-Au/GOD-modified glassy carbon electrode. The glucose biosensor has a linear range from 4.0 to 24.0 mM, which is suitable for glucose determination by real samples. It should be worthwhile noting that, from 4.0 to 12.0 mM, the cathodic peak currents of the biosensor decrease linearly with increasing the glucose concentrations in human blood. Meanwhile, the resulting biosensor can also prevent the effects of interfering species.