72 resultados para gliosis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le glaucome est la principale cause de cécité irréversible dans le monde. Chez les patients atteints de cette pathologie, la perte de la vue résulte de la mort sélective des cellules ganglionnaires (CGR) de la rétine ainsi que de la dégénérescence axonale. La pression intraoculaire élevée est considérée le facteur de risque majeur pour le développement de cette maladie. Les thérapies actuelles emploient des traitements pharmacologiques et/ou chirurgicaux pour diminuer la pression oculaire. Néanmoins, la perte du champ visuel continue à progresser, impliquant des mécanismes indépendants de la pression intraoculaire dans la progression de la maladie. Il a été récemment démontré que des facteurs neuroinflammatoires pourraient être impliqués dans le développement du glaucome. Cette réponse est caractérisée par une régulation positive des cytokines pro-inflammatoires, en particulier du facteur de nécrose tumorale alpha (TNFα). Cependant, le mécanisme par lequel le processus neuroinflammatoire agit sur la mort neuronale reste à clarifier. L’hypothèse principale de ce doctorat propose que les facteurs pro-inflammatoires comme le TNFα et la phosphodiestérase 4 (PDE4) interagissent avec les mécanismes moléculaires de la mort neuronale, favorisant ainsi la survie et la protection des CGRs au cours du glaucome. Dans la première partie de ma thèse, J’ai utilisé un modèle in vivo de glaucome chez des rats Brown Norway pour montrer que l’expression du TNFα est augmentée après l'induction de l'hypertension oculaire. L'hypothèse spécifique de cette étude suggère que les niveaux élevés de TNFα provoquent la mort des CGRs en favorisant l'insertion de récepteurs AMPA perméables au calcium (CP-AMPAR) à la membrane cytoplasmique. Pour tester cette hypothèse, j’ai utilisé un inhibiteur sélectif de la forme soluble du TNFα, le XPro1595. L'administration de cet agent pharmacologique a induit une protection significative des somas et des axones des neurones rétiniens. L'évaluation de la perméabilité au cobalt a montré que le TNFα soluble est impliqué dans l'insertion de CP-AMPAR à la membrane des CGRs lors du glaucome. L’exposition des neurones à une pression oculaire élevée est à l’origine de la hausse de la densité membranaire des CP-AMPARs, grâce à une diminution de l’expression de la sous-unité GluA2. La présence de GluA2 au sein du récepteur ne permet pas l’entrée du calcium à l’intérieur de la cellule. L'administration intraoculaire d’antagonistes spécifiques des CP-AMPARs promeut la protection des somas et des axones des CGRs. Ces résultats montrent que les CP-AMPARs jouent un rôle important dans la pathologie du glaucome. Dans la deuxième partie de ma thèse, j’ai caractérisé l'effet neuroprotecteur d’un inhibiteur de la PDE4, l’ibudilast, dans notre modèle de glaucome. L'hypothèse spécifique s’oriente vers une atténuation de la réponse neuroinflammatoire et de la gliose par l’administration d’ibudilast, favorisant ainsi la protection neuronale. Les résultats montrent que dans les rétines glaucomateuses, l’ibudilast diminue la gliose et l'expression de plusieurs facteurs tels que le TNFα, l'interleukine-1β (IL-1β), l’interleukine-6 (IL-6) et le facteur inhibiteur de la migration des macrophages (MIF). Chez les rats glaucomateux, nous avons observé une expression notable de PDE4A dans les cellules de Müller, qui est en corrélation avec l'accumulation de l’AMP cyclique (AMPc) dans ces cellules après un traitement d’ibudilast. Finalement, nous avons démontré que la protection des CGRs via l’administration d’ibudilast est un mécanisme dépendent de l’AMPc et de la protéine kinase A (PKA). En conclusion, les résultats présentés dans cette thèse identifient deux mécanismes différents impliqués dans la perte des CGRs au cours du glaucome. Ces mécanismes pourraient fournir des perspectives potentielles pour le développement de nouvelles stratégies de traitement du glaucome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Bevacizumab has been widely used as a vascular endothelial growth factor antagonist in the treatment of retinal vasoproliferative disorders in adults and, more recently, in infants with retinopathy of prematurity. Recently, it has been proposed that vascular endothelial growth factor acts as a protective factor for neurons and glial cells, particularly in developing nervous tissue. The purpose of this study was to investigate the effects of bevacizumab on the developing retinas of juvenile rabbits. METHODS: Juvenile rabbits received bevacizumab intravitreously in one eye; the other eye acted as an untreated control. Slit-lamp and fundoscopic examinations were performed both prior to and seven days after treatment. At the same time, retina samples were analyzed using immunohistochemistry to detect autophagy and apoptosis as well as proliferation and glial reactivity. Morphometric analyses were performed, and the data were analyzed using the Mann-Whitney U test. RESULTS: No clinical abnormalities were observed in either treated or untreated eyes. However, immunohistochemical analyses revealed a reduction in the occurrence of programmed cell death and increases in both proliferation and reactivity in the bevacizumab-treated group compared with the untreated group. CONCLUSIONS: Bevacizumab appears to alter programmed cell death patterns and promote gliosis in the developing retinas of rabbits; therefore, it should be used with caution in developing eyes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Bevacizumab has been widely used as a vascular endothelial growth factor antagonist in the treatment of retinal vasoproliferative disorders in adults and, more recently, in infants with retinopathy of prematurity. Recently, it has been proposed that vascular endothelial growth factor acts as a protective factor for neurons and glial cells, particularly in developing nervous tissue. The purpose of this study was to investigate the effects of bevacizumab on the developing retinas of juvenile rabbits. METHODS: Juvenile rabbits received bevacizumab intravitreously in one eye; the other eye acted as an untreated control. Slit-lamp and fundoscopic examinations were performed both prior to and seven days after treatment. At the same time, retina samples were analyzed using immunohistochemistry to detect autophagy and apoptosis as well as proliferation and glial reactivity. Morphometric analyses were performed, and the data were analyzed using the Mann-Whitney U test. RESULTS: No clinical abnormalities were observed in either treated or untreated eyes. However, immunohistochemical analyses revealed a reduction in the occurrence of programmed cell death and increases in both proliferation and reactivity in the bevacizumab-treated group compared with the untreated group. CONCLUSIONS: Bevacizumab appears to alter programmed cell death patterns and promote gliosis in the developing retinas of rabbits; therefore, it should be used with caution in developing eyes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the central nervous system (CNS) ciliary neurotrophic factor (CNTF) is expressed by astrocytes where it remains stored as an intracellular protein; its release and function as an extracellular ligand are thought to occur in the event of cellular injury. We find that overexpression of CNTF in transgenic mice recapitulates the glial response to CNS lesion, as does its injection into the uninjured brain. These results demonstrate that CNTF functions as an inducer of reactive gliosis, a condition associated with a number of neurological diseases of the CNS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spinal cord injury usually results in permanent paralysis because of lack of regrowth of damaged neurons. Here we demonstrate that adult mice lacking EphA4 (-/-), a molecule essential for correct guidance of spinal cord axons during development, exhibit axonal regeneration and functional recovery after spinal cord hemisection. Anterograde and retrograde tracing showed that axons from multiple pathways, including corticospinal and rubrospinal tracts, crossed the lesion site. EphA4 -/- mice recovered stride length, the ability to walk on and climb a grid, and the ability to grasp with the affected hindpaw within 1-3 months of injury. EphA4 expression was upregulated on astrocytes at the lesion site in wild-type mice, whereas astrocytic gliosis and the glial scar were greatly reduced in lesioned EphA4-/- spinal cords. EphA4 -/- astrocytes failed to respond to the inflammatory cytokines, interferon-gamma or leukemia inhibitory factor, in vitro. Neurons grown on wild-type astrocytes extended shorter neurites than on EphA4 -/- astrocytes, but longer neurites when the astrocyte EphA4 was blocked by monomeric EphrinA5-Fc. Thus, EphA4 regulates two important features of spinal cord injury, axonal inhibition, and astrocytic gliosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of astrogliosis, or reactive gliosis, is a typical response of astrocytes to a wide range of physical and chemical injuries. The up-regulation of the astrocyte specific glial fibrillary acidic protein (GFAP) is a hallmark of reactive gliosis and is widely used as a marker to identify the response. In order to develop a reliable, sensitive and high throughput astrocyte toxicity assay that is more relevant to the human response than existing animal cell based models, the U251-MG, U373-MG and CCF-STTG 1 human astrocytoma cell lines were investigated for their ability to exhibit reactive-like changes following exposure to ethanol, chloroquine diphosphate, trimethyltin chloride and acrylamide. Cytotoxicity analysis showed that the astrocytic cells were generally more resistant to the cytotoxic effects of the agents than the SH-SY5Y neuroblastoma cells. Retinoic acid induced differentiation of the SH-SY5Y line was also seen to confer some degree of resistance to toxicant exposure, particularly in the case of ethanol. Using a cell based ELISA for GFAP together with concurrent assays for metabolic activity and cell number, each of the three cell lines responded to toxicant exposure by an increase in GFAP immunoreactivity (GFAP-IR), or by increased metabolic activity. Ethanol, chloroquine diphosphate, trimethyltin chloride and bacterial lipopolysaccharide all induced either GFAP or MTT increases depending upon the cell line, dose and exposure time. Preliminary investigations of additional aspects of astrocytic injury indicated that IL-6, but not TNF-α. or nitric oxide, is released following exposure to each of the compounds, with the exception of acrylamide. It is clear that these human astrocytoma cell lines are capable of responding to toxicant exposure in a manner typical of reactive gliosis and are therefore a valuable cellular model in the assessment of in vitro neurotoxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Programmed cell death (PCD) and progenitor cell generation (of glial and in some brain areas also neuronal fate) in the CNS is an active process throughout life and is generally not associated with gliosis which means that PCD can be pathologically silent. The striking discovery that progenitor cell generation (of glial and in some brain areas neuronal fate) is widespread in the adult CNS (especially the hippocampus) suggest a much more dynamic scenario than previously thought and transcends the dichotomy between neurodevelopmental and neurodegenerative models of schizophrenia and related disorders. We suggest that the regulatory processes that control the regulation of PCD and the generation of progenitor cells may be disturbed in the early phase of psychotic disorders underpinning a disconnectivity syndrom at the onset of clinically overt disorders. An ongoing 1H-MRS study of the anterior hippocampus at 3 Tesla in mostly drug-naive first-episode psychosis patients suggests no change in NAA, but significant increases in myo-inositol and lactate. The data suggests that neuronal integrity in the anterior hippocampus is still intact at the early stage of illness or mainly only functionally impaired. However the increase in lactate and myo-inositol may reflect a potential disturbance of generation and PCD of progenitor cells (of glial and in selected brain areas also neuronal fate) at the onset of psychosis. If true the use of neuroprotective agents such as lithium or eicosapentaenoic acid (which inhibit PCD and support cell generation)in the early phase of psychotic disorders may be a potent treatment avenue to explore.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trauma to the spinal cord creates an initial physical injury damaging neurons, glia, and blood vessels, which then induces a prolonged inflammatory response, leading to secondary degeneration of spinal cord tissue, and further loss of neurons and glia surrounding the initial site of injury. Angiogenesis is a critical step in tissue repair, but in the injured spinal cord angiogenesis fails; blood vessels formed initially later regress. Stabilizing the angiogenic response is therefore a potential target to improve recovery after spinal cord injury (SCI). Vascular endothelial growth factor (VEGF) can initiate angiogenesis, but cannot sustain blood vessel maturation. Platelet-derived growth factor (PDGF) can promote blood vessel stability and maturation. We therefore investigated a combined application of VEGF and PDGF as treatment for traumatic spinal cord injury, with the aim to reduce secondary degeneration by promotion of angiogenesis. Immediately after hemisection of the spinal cord in the rat we delivered VEGF and PDGF and to the injury site. One and 3 months later the size of the lesion was significantly smaller in the treated group compared to controls, and there was significantly reduced gliosis surrounding the lesion. There was no significant effect of the treatment on blood vessel density, although there was a significant reduction in the numbers of macrophages/microglia surrounding the lesion, and a shift in the distribution of morphological and immunological phenotypes of these inflammatory cells. VEGF and PDGF delivered singly exacerbated secondary degeneration, increasing the size of the lesion cavity. These results demonstrate a novel therapeutic intervention for SCI, and reveal an unanticipated synergy for these growth factors whereby they modulated inflammatory processes and created a microenvironment conducive to axon preservation/sprouting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuronal ceroid lipofuscinoses (NCLs) are a family of inherited pediatric neurodegenerative disorders, leading to retinal degeneration, death of selective neuronal populations and accumulation of autofluorscent ceroid-lipopigments. The clinical manifestations are generally similar in all forms. The Finnish variant late infantile neuronal ceroid lipofuscinosis (vLINCLFin) is a form of NCL, especially enriched in the Finnish population. The aim of this thesis was to analyse the brain pathology of vLINCLFin utilising the novel Cln5-/- mouse model. Gene expression profiling of the brains of already symptomatic Cln5-/- mice revealed that inflammation, neurodegeneration and defects in myelinization are the major characteristics of the later stages of the disease. Histological characterization of the brain pathology confirmed that the thalamocortical system is affected in Cln5-/- mice, similarly to the other NCL mouse models. However, whereas the brain pathology in all other analyzed NCL mice initiate in the thalamus and spread only months later to the cortex, we observed that the sequence of events is uniquely reversed in Cln5-/- mice; beginning in the cortex and spreading to the thalamus only months later. We could also show that even though neurodegeneration is inititated in the cortex, reactive gliosis and loss of myelin are evident in specific nuclei of the thalamus already in the 1 month old brain. To obtain a deeper insight into the disturbed metabolic pathways, we performed gene expression profiling of presymptomatic mouse brains. We validated these findings with immunohistological analyses, and could show that cytoskeleton and myelin were affected in Cln5-/- mice. Comparison of gene expression profiling results of Cln5-/- and Cln1-/- mice, further highlighted that these two NCL models share a common defective pathway, leading to disturbances in the neuronal growth cone and cytoskeleton. Encouraged by the evidence of this defected pathway, we analyzed the molecular interactions of NCL-proteins and observed that Cln5 and Cln1/Ppt1 proteins interact with each other. Furthermore, we demonstrated that Cln5 and Cln1/Ppt1 share an interaction partner, the F1-ATP synthase, potentially linking both vLINCLFIN and INCL diseases to disturbed lipid metabolism. In addition, Cln5 was shown to interact with other NCL proteins; Cln2, Cln3, Cln6 and Cln8, implicating a central role for Cln5 in the NCL pathophysiology. This study is the first to describe the brain pathology and gene expression changes in the Cln5-/- mouse. Together the findings presented in this thesis represent novel information of the disease processes and the molecular mechanisms behind vLINCLFin and have highlighted that vLINCLFin forms a very important model to analyze the pathophysiology of NCL diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cognitive impairment is common following traumatic brain injury (TBI), and neuroinflammatory mechanisms may predispose to the development of neurodegenerative disease. Apolipoprotein E (apoE) polymorphisms modify neuroinflammatory responses, and influence both outcome from acute brain injury and the risk of developing neurodegenerative disease. We demonstrate that TBI accelerates neurodegenerative pathology in double-transgenic animals expressing the common human apoE alleles and mutated amyloid precursor protein, and that pathology is exacerbated in the presence of the apoE4 allele. The administration of an apoE-mimetic peptide markedly reduced the development of neurodegenerative pathology in mice homozygous for apoE3 as well as apoE3/E4 heterozygotes. These results demonstrate that TBI accelerates the cardinal neuropathological features of neurodegenerative disease, and establishes the potential for apoE mimetic therapies in reducing pathology associated with neurodegeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Huntington's disease (HD) is a neurodegenerative disease caused by the expansion of a poly-glutamine (poly-Q) stretch in the huntingtin (Htt) protein. Gain-of-function effects of mutant Htt have been extensively investigated as the major driver of neurodegeneration in HD. However, loss-of-function effects of poly-Q mutations recently emerged as potential drivers of disease pathophysiology. Early synaptic problems in the excitatory cortical and striatal connections have been reported in HD, but the role of Htt protein in synaptic connectivity was unknown. Therefore, we investigated the role of Htt in synaptic connectivity in vivo by conditionally silencing Htt in the developing mouse cortex. When cortical Htt function was silenced, cortical and striatal excitatory synapses formed and matured at an accelerated pace through postnatal day 21 (P21). This exuberant synaptic connectivity was lost over time in the cortex, resulting in the deterioration of synapses by 5 weeks. Synaptic decline in the cortex was accompanied with layer- and region-specific reactive gliosis without cell loss. To determine whether the disease-causing poly-Q mutation in Htt affects synapse development, we next investigated the synaptic connectivity in a full-length knock-in mouse model of HD, the zQ175 mouse. Similar to the cortical conditional knock-outs, we found excessive excitatory synapse formation and maturation in the cortices of P21 zQ175, which was lost by 5 weeks. Together, our findings reveal that cortical Htt is required for the correct establishment of cortical and striatal excitatory circuits, and this function of Htt is lost when the mutant Htt is present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the summer of 1990 an epizootic infection caused by a morbillivirus (DMV) killed several thousand striped dolphins (Stenella coeruleoalba) in the Mediterranean Sea. In 1991 and 1992 the epizootic reached Italian and Greek waters. The infection by DMV in the acute period of the epizootic caused encephalitis, pneumonia and depletion of lymph nodes. After 1990, the systemic infection apparently disappeared from the Catalonian coast, giving way to cases of chronic infection of the CNS. Dolphins that died between 1991 and May 1994 were necropsied, and investigated for lesions due to DMV, and for the presence of morbillivirus antigen in tissues. Encephalitis occurred in 6 dolphins in which DMV antigen was demonstrated in the CNS and which were without lesions or antigen in other, non-nervous tissues. Inflammatory lesions, gliosis, and DMV antigen decreased in density and amount from cerebral grey matter, through the thalamic areas to the medulla oblongata. The cerebellum was usually spared. Lesions consisted of non-suppurative encephalitis, with diffuse gliosis and glial nodules and neuronophagia, and loss of neurons. Perivascular cuffing of lymphocytes and plasma cells was present in the cerebral cortex and the white matter beneath the cortex. Multinucleate syncytia were not detected in any of the dolphins. The haemagglutinin of DMV was detected mainly in neurons in the cerebral cortical areas. There was no clear relationship between the presence and amount of DMV antigen and the density or chronicity of lesions. Viral inclusions were seen in haematoxylin and eosin stained sections in 3/6 dolphins, principally in the nucleus and the cytoplasm of neurons. In the immunoperoxidase stained sections, dense granular deposits of chromogen, similar to viral inclusions, were evident in all 6 dolphins. The change in the distribution of lesions and of DMV antigen, from systemic to localized in the CNS, and the clustering of systemic DMV infections in the first four months of the epizootic, giving rise to sporadic occurrence of local CNS infection in the subsequent four years, as well as the chronic nature of the CNS lesions, which closely resembles subacute sclerosing panencephalitis, strongly support the existence of a chronic morbillivirus infection in the striped dolphin, as a delayed consequence of the 1990 epizootic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims/hypothesis: We aimed to determine whether plasma lipoproteins, after leakage into the retina and modification by glycation and oxidation, contribute to the development of diabetic retinopathy in a mouse model of type 1 diabetes.

Methods: To simulate permeation of plasma lipoproteins intoretinal tissues, streptozotocin-induced mouse models of diabetes and non-diabetic mice were challenged with intravitreal injection of human ‘highly-oxidised glycated’ low-density lipoprotein (HOG-LDL), native- (N-) LDL, or the vehicle PBS.Retinal histology, electroretinography (ERG) and biochemical markers were assessed over the subsequent 14 days.

Results: Intravitreal administration of N-LDL and PBS had noeffect on retinal structure or function in either diabetic or non-diabetic animals. In non-diabetic mice, HOG-LDL elicited a transient inflammatory response without altering retinal function,but in diabetic mice it caused severe, progressive retinal injury, with abnormal morphology, ERG changes, vascular leakage, vascular endothelial growth factor overexpression, gliosis, endoplasmic reticulum stress, and propensity to apoptosis.

Conclusions/interpretation: Diabetes confers susceptibility to retinal injury imposed by intravitreal injection of modified LDL. The data add to the existing evidence that extravasated, modified plasma lipoproteins contribute to the propagation of diabetic retinopathy. Intravitreal delivery of HOG-LDL simulates a stress known to be present, in addition to hyperglycaemia, in human diabetic retinopathy once blood retinal barriers are compromised.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de mestrado, Ciências do Sono, Faculdade de Medicina, Universidade de Lisboa, 2016