999 resultados para complement component C4d


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complement-mediated killing of pathogens through lytic pathway is an important effector mechanism of innate immune response. C9 is the ninth member of complement components, creating the membrane attack complex (MAC). In the present study, a putative cDNA sequence encoding the 650 amino acids of C9 and its genomic organization were identified in grass carp Ctenopharyngodon idella. The deduced amino acid sequence of grass carp C9 (gcC9) showed 48% and 38.5% identity to Japanese flounder and human C9, respectively. Domain search revealed that gcC9 contains a LDL receptor domain, an EGF precursor domain, a MACPF domain and two TSP domain located in the N-terminal and C-terminal, respectively. Phylogenetic analysis demonstrated that gcC9 is clustered in a same clade with Japanese flounder, pufferfish and rainbow trout C9. The gcC9 gene consists of 11 exons with 10 introns, spacing over approximately 7 kb of genomic sequence. Analysis of gcC9 promoter region revealed the presence of a TATA box and some putative transcription factor such as C/EBP, HSF, NF-AT, CHOP-C, HNF-3B, GATA-2, IK-2, EVI- 1, AP-1, CP2 and OCT-1 binding sites. The first intron region contains C/EBPb, HFH-1 and Oct-1 binding sites. RT-PCR and Western blotting analysis demonstrated that the mRNA and protein of gcC9 gene have similar expression patterns, being constitutively expressed in all organs examined of healthy fish, with the highest level in hepatopancreas. By real-time quantitative RT-PCR analysis, gcC9 transcripts were significantly up-regulated in head kidney, spleen, hepatopancreas and down-regulated in intestine from inactivated fish bacterial pathogen Flavobacterium columnare-stimulated fish, demonstrating the role of C9 in immune response. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE. Polymorphic variation in genes involved in regulation of the complement system has been implicated as a major cause of genetic risk, in addition to the LOC387715/HTRA1 locus and other environmental influences. Previous studies have identified polymorphisms in the complement component 2 (CC2) and factor B (CFB) genes, as potential functional variants associated with AMD, in particular CFB R32Q and CC2 rs547154, both of which share strong linkage disequilibrium (LD). METHODS. Data derived from the HapMap Project were used to select 18 haplotype-tagging SNPs across the extended CC2/ CFB region for genotyping, to measure the strength of LD in 318 patients with neovascular AMD and 243 age-matched control subjects to identify additional potential functional variants in addition to those originally reported. RESULTS. Strong LD was measured across this region as far as the superkiller viralicidic activity 2-like gene (SKIV2L). Nine SNPs were identified to be significantly associated with the genetic effect observed at this locus. Of these, a nonsynonymous coding variant SKIV2L R151Q (rs438999; OR, 0.48; 95% confidence interval [CI], 0.31- 0.74; P < 0.001), was in strong LD with CFB R32Q, rs641153 (r2 = 0.95) and may exert a functional effect. When assessed within a logistic regression model measuring the effects of genetic variation at the CFH and LOC387715/HTRA1 loci and smoking, the effect remained significant (OR, 0.38; 95% CI, 0.22- 0.65; P < 0.001). Additional variation identified within this region may also confer a weaker but independent effect and implicate additional genes within the pathogenesis of AMD. CONCLUSIONS. Because of the high level of LD within the extended CC2/CFB region, variation within SKIV2L may exert a functional effect in AMD. Copyright © Association for Research in Vision and Ophthalmology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: A non-synonymous single nucleotide polymorphism ( SNP) in complement component 3 has been shown to increase the risk of age-related macular degeneration (AMD). We assess its effect on AMD risk in a Northern Irish sample, test for gene-gene and gene-environment interaction, and review a risk prediction model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We performed a meta-analysis to estimate the magnitude of C3 gene polymorphism effects, and their possible mode of action, on age-related macular degeneration (AMD). The meta-analysis included 16 studies for rs2230199 and 7 studies for rs1047286. Data extraction and risk of bias assessments were performed in duplicate, and heterogeneity and publication bias were explored. There was moderate evidence for association between both polymorphisms and AMD in individuals of European descent. For rs2230199, patients with CG and GG genotypes were 1.44 (95% CI: 1.33 – 1.56) and 1.88 (95% CI: 1.59 – 2.23) times more likely to have AMD than patients with CC genotype. For rs1047286, those with GA and AA genotypes had 1.27 (95% CI: 1.15 – 1.41) and 1.70 (95% CI: 1.27 – 2.11) times higher risk of AMD than those with GG genotypes. These gene effects suggested an additive model. The population attributable risks for the GG/GC and AA/GA genotypes are approximately 5-10%. Stratification of studies on the basis of ethnicity indicates that these variants are very infrequent in Asian populations and the significance of the effect observed is based largely on the high frequency of these variants within individuals of European descent. This meta-analysis supports the association between C3 and AMD and provides a robust estimate of the genetic risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors performed a systematic review of the association of complement component 2(C2)/complement factor B (CFB) gene polymorphisms with age-related macular degeneration (AMD). In total, data from 19 studies published between 2006 and 2011 were pooled for 4 polymorphisms: rs9332739 and rs547154 in the C2 gene and rs4151667 and rs641153 in the CFB gene. Data extraction and assessments for risk of bias were independently performed by 2 reviewers. Allele frequencies and allele and genotypic effects were pooled. Heterogeneity and publication bias were explored. Pooled minor allele frequencies for all 4 SNPs were between 4.7% and 9.6% for all polymorphisms, except for an Indian population in which the C allele at rs9332739 was the major allele. For the C2 polymorphisms, the minor C allele at rs9332739 and the minor T allele at rs547154 carried estimated relative risks (odds ratios) of 0.55 (95% confidence interval (CI): 0.46, 0.65) and 0.47 (95% CI: 0.39, 0.57), respectively. For the CFB polymorphisms, the minor A alleles at rs4151667 and rs614153 carried estimated risks of 0.54 (95% CI: 0.45, 0.64) and 0.41 (95% CI: 0.34, 0.51), respectively. These allele effects contributed to an absolute lowering of the risk of all AMD in Caucasian populations by 2.0%-6.0%. This meta-analysis provides a robust estimate of the protective association of C2/CFB with AMD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schizophrenia is a heritable brain illness with unknown pathogenic mechanisms. Schizophrenia's strongest genetic association at a population level involves variation in the major histocompatibility complex (MHC) locus, but the genes and molecular mechanisms accounting for this have been challenging to identify. Here we show that this association arises in part from many structurally diverse alleles of the complement component 4 (C4) genes. We found that these alleles generated widely varying levels of C4A and C4B expression in the brain, with each common C4 allele associating with schizophrenia in proportion to its tendency to generate greater expression of C4A. Human C4 protein localized to neuronal synapses, dendrites, axons, and cell bodies. In mice, C4 mediated synapse elimination during postnatal development. These results implicate excessive complement activity in the development of schizophrenia and may help explain the reduced numbers of synapses in the brains of individuals with schizophrenia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mice selected for a strong (AIRmax) or weak (AIRmin) acute inflammatory response present different susceptibilities to bacterial infections, autoimmune diseases and carcinogenesis. Variations in these phenotypes have been also detected in AIRmax and AIRmin mice rendered homozygous for Slc11a1 resistant (R) and susceptible (S) alleles. Our aim was to investigate if the phenotypic differences observed in these mice was related to the complement system. AIRmax and AIRmin mice and AIRmax and AIRmin groups homozygous for the resistance (R) or susceptibility (S) alleles of the solute carrier family 11a1 member (Slc11a1) gene, formerly designated Nramp-1. While no difference in complement activity was detected in sera from AIRmax and AIRmin strains, all sera from AIRmax Slc11a1 resistant mice (AIRmax(RR)) presented no complement-dependent hemolytic activity. Furthermore, C5 was not found in their sera by immunodiffusion and, polymerase chain reaction and DNA sequencing of its gene demonstrated that AIRmax(RR) mice are homozygous for the C5 deficient (D) mutation previously described in A/J. Therefore, the C5D allele was fixed in homozygosis in AIRmax(RR) line. The AIRmax(RR) line is a new experimental mouse model in which a strong inflammatory response can be triggered in vivo in the absence of C5.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycobacterium tuberculosis, the causative agent of tuberculosis, is a facultative intracellular pathogen that uses the host mononuclear phagocyte as a niche for survival and replication during infection. Complement component C3 has previously been shown to enhance the binding of M. tuberculosis to mononuclear phagocytes. Using a C3 ligand affinity blot protocol, we identified a 30 kDa C3-binding protein in M. tuberculosis as heparin-binding hemagglutinin (HbhA). HbhA was found to be a hydrophobic protein that localized to the cell membrane/cell wall fraction of M. tuberculosis, and this protein has previously been shown by others to be located on the surface of M. tuberculosis. The C3-binding activity of HbhA was localized to the C-terminus of the protein, which consists of lysine-alanine repeats. Full-length recombinant HbhA coated onto latex beads was shown to mediate the adherence of the beads to murine macrophage-like cells in both a C3-dependent and a C3-independent manner. An in-frame 576 by deletion in the hbhA gene was created in a virulent strain of M. tuberculosis using a PCR technique known as gene splicing by overlap extension (SOEing). Using the ΔhbhA mutant, HbhA was found not to be necessary for growth of M. tuberculosis in laboratory media or in macrophage-like cells, nor is HbhA required for adherence of M. tuberculosis to macrophage-like cells. HbhA is, however, required for infectivity of M. tuberculosis in mice. Mice infected with the ΔhbhA mutant show decreased growth in the lungs, liver, and spleen compared to mice infected with the wild-type strain. Using the ΔhbhA mutant strain, we were able to purify and identify a second 30-kDa C3-binding protein, HupB. These data demonstrate that HbhA is required for the in vivo but not the in vitro survival of M. tuberculosis and that HbhA is not necessary for the adherence of M. tuberculosis to the macrophage-like cells used in these studies. The expression of two proteins that bind human C3 may aid in the efficient binding of M. tuberculosis to complement receptors for uptake into mononuclear cells, or may influence other aspects of the host-parasite interaction. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New Zealand black x New Zealand white (NZB/W) F1 mice spontaneously develop an autoimmune syndrome with notable similarities to human systemic lupus erythematosus. Female NZB/WF1 mice produce high titers of antinuclear antibodies and invariably succumb to severe glomerulonephritis by 12 months of age. Although the development of the immune-complex nephritis is accompanied by abundant local and systemic complement activation, the role of proinflammatory complement components in disease progression has not been established. In this study we have examined the contribution of activated terminal complement proteins to the pathogenesis of the lupus-like autoimmune disease. Female NZB/W F1 mice were treated with a monoclonal antibody (mAb) specific for the C5 component of complement that blocks the cleavage of C5 and thus prevents the generation of the potent proinflammatory factors C5a and C5b-9. Continuous therapy with anti-C5 mAb for 6 months resulted in significant amelioration of the course of glomerulonephritis and in markedly increased survival. These findings demonstrate an important role for the terminal complement cascade in the progression of renal disease in NZB/W F1 mice, and suggest that mAb-mediated C5 inhibition may be a useful approach to the therapy of immune-complex glomerulonephritis in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Group B streptococci (GBS) cause sepsis and meningitis in neonates and serious infections in adults with underlying chronic illnesses. Specific antibodies have been shown to be an important factor in protective immunity for neonates, but the role of serum complement is less well defined. To elucidate the function of the complement system in immunity to this pathogen, we have used the approach of gene targeting in embryonic stem cells to generate mice totally deficient in complement component C3. Comparison of C3-deficient mice with mice deficient in complement component C4 demonstrated that the 50% lethal dose for GBS infection was reduced by approximately 50-fold and 25-fold, respectively, compared to control mice. GBS were effectively killed in vitro by human blood leukocytes in the presence of specific antibody and C4-deficient serum but not C3-deficient serum. The defective opsonization by C3-deficient serum in vitro was corroborated by in vivo studies in which passive immunization of pregnant dams with specific antibodies conferred protection from GBS challenge to normal and C4-deficient pups but not C3-deficient pups. These results indicate that the alternative pathway is sufficient to mediate effective opsonophagocytosis and protective immunity to GBS in the presence of specific antibody. In contrast, the increased susceptibility to infection of non-immune mice deficient in either C3 or C4 implies that the classical pathway plays an essential role in host defense against GBS infection in the absence of specific immunity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed at investigating associations between monocytes/ macrophages (Mo) infiltration and three important criteria associated with acute antibody-mediated rejection: C4d staining, microcirculation injury, and graft survival time. By quantitative analysis, Mo were counted in peritubular capillaries and in the interstitial compartment (peritubular/interstitial Mo), and they were also identified in glomeruli (glomerular Mo). The study included 47 patients who received renal allograft between 1991 and 2009. Capillaritis and glomerulitis were classified by the Banff scoring system, and C4d and Mo were analyzed by immunohistochemistry. In the quantitative analysis, the mean values of 50 Mo per 10 high-power fields (HPF) and 4 Mo per glomerulus were used as cut-off points for the peritubular/interstitial and glomerular compartments, respectively. Positive C4d cases were associated with the groups of biopsies with a mean value ≥50 Mo per 10 HPF (p = 0.01) and ≥4 Mo per glomerulus (p = 0.02). The group with a mean value ≥4 Mo per glomerulus also showed association with the presence of glomerulitis (p = 0.02). Peritubular/ interstitial Mo did not associate with glomerulitis. Capillaritis did not show association with peritubular/interstitial or glomerular Mo. As regards graft survival, the infiltration of Mo in glomeruli interfered with allograft survival (p = 0.01). The group with a mean value of ≥4 glomerular Mo presented worse survival at the time of the 1-year follow-up. According to the literature, our data showed that infiltration of mononuclear cells was associated with C4d staining, microcirculation injury, and glomerulitis, in particular, and that glomerular macrophages could influence renal allograft survival. Copyright © 2013 Informa Healthcare USA, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Alcoholic liver disease (ALD) is a well recognized and growing health problem worldwide. ALD advances from fatty liver to inflammation, necrosis, fibrosis and cirrhosis. There is accumulating evidence that the innate immune system is involved in alcoholic liver injury. Within the innate and acquired immune systems, the complement system participates in inflammatory reactions and in the elimination of invading foreign, as well as endogenous apoptotic or injured cells. The present study aimed at evaluating the role of the complement system in the development of alcoholic liver injury. First, in order to study the effects of chronic ethanol intake on the complement system, the deposition of complement components in liver and the expression of liver genes associated with complement in animals with alcohol-induced liver injury were examined. It was demonstrated that chronic alcohol exposure leads to hepatic deposition of the complement components C1, C3, C8 and C9 in the livers of rats. Liver gene expression analysis showed that ethanol up-regulated the expression of transcripts for complement factors B, C1qA, C2, C3 and clusterin. In contrast, ethanol down-regulated the expression of the complement regulators factor H, C4bp and factor D and the terminal complement components C6, C8α and C9. Secondly, the role of the terminal complement pathway in the development of ALD was evaluated by using rats genetically deficient in the complement component C6 (C6-/-). It was found that chronic ethanol feeding induced more liver pathology (steatosis and inflammatory changes) in C6-/- rats than in wild type rats. The hepatic triacylglyceride content and plasma alanine aminotransferase activity increased in C6-/- rats, supporting the histopathological findings and elevation of the plasma pro-/anti-inflammatory TNF-/IL-10 ratio was also more marked in C6-/- rats. Third, the role of the alternative pathway in the development of alcoholic liver steatosis was characterized by using C3-/- mice. In C3-/- mice ethanol feeding tended to reduce steatosis and had no further effect on liver triacylglyceride, liver/body weight ratio nor on liver malondialdehyde level and serum alanine aminotransferase activity. In C3-/- mice alcohol-induced liver steatosis was reduced also after an acute alcohol challenge. In both wild type and C3-/- mice ethanol markedly reduced serum cholesterol and ApoA-I levels, phospholipid transfer protein activity and hepatic mRNA levels of fatty acid binding proteins and fatty acid -oxidation enzymes. In contrast, exclusively in C3-/- mice, ethanol treatment increased serum and liver adiponectin levels but down-regulated the expression of transcripts of lipogenic enzymes, adiponectin receptor 2 and adipose differentiation-related protein and up-regulated phospholipase D1. In conclusion, this study has demonstrated that the complement system is involved in the development of alcohol-induced liver injury. Chronic alcohol exposure causes local complement activation and induction of mRNA expression of classical and alternative pathway components in the liver. In contrast expression of the terminal pathway components and soluble regulators were decreased. A deficient terminal complement pathway predisposes to alcoholic liver damage and promotes a pro-inflammatory cytokine response. Complement component C3 contributes to the development of alcohol-induced fatty liver and its consequences by affecting regulatory and specific transcription factors of lipid homeostasis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Alzheimer's disease (AD) and age-related macular degeneration (AMD) are both neurodegenerative disorders which share common pathological and biochemical features of the complement pathway. The aim of this study was to investigate whether there is an association between well replicated AMD genetic risk factors and AD. A large cohort of AD (n = 3898) patients and controls were genotyped for single nucleotide polymorphisms (SNPs) in the complement factor H (CFH), the Age-related maculopathy susceptibility protein 2 (ARMS2) the complement component 2 (C2), the complement factor B (CFB), and the complement component 3 (C3) genes. While significant but modest associations were identified between the complement factor H, the age-related maculopathy susceptibility protein 2, and the complement component 3 single nucleotide polymorphisms and AD, these were different in direction or genetic model to that observed in AMD. In addition the multilocus genetic model that predicts around a half of the sibling risk for AMD does not predict risk for AD. Our study provides further support to the hypothesis that while activation of the alternative complement pathway is central to AMD pathogenesis, it is less involved in AD.