959 resultados para calcium channel L type


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The median preoptic nucleus (MnPO) is one of most important site of the lamina terminalis implicated in the regulation of hydro electrolytic and cardiovascular balance. The purpose of this study was to determine the effect of L-Type calcium channel antagonist, nifedipine, on the increase of median arterial blood pressure (MAP) induce by angiotensin II (ANG II) injected into the MnPO. The influence of nitric oxide (NO) on nifedipine antipressor action has also been studied by utilizing N W-nitro-L-arginine methyl ester (L-NAME) (40 μg 0.2 μL -1) a NO synthase inhibitor (NOSI), 7-nitroindazole (7-NIT) (40 μg 0.2 μL -1), a specific neuronal NO synthase inhibitor (nNOSI) and sodium nitroprusside (SNP) (20 μg 0.2 μL -1) a NO donor agent. We have also investigated the central role of losartan and PD123349 (20 nmol 0.2 μL -1), AT 1 and AT 2, respectively (selective non peptide ANG II receptor antagonists), in the pressor effect of ANG II (25 pmol 0.2 μL -1) injected into the MnPO. Male Wistar rats weighting 200-250 g, with cannulae implanted into the MnPO were utilized. Losartan injected into the MnPO, prior to ANG II, blocked the pressor effect of ANGII. PD 123319 only decreased the pressor effect of ANG II. Rats pre-treated with either 50 μg 0.2 μL -1 or 100 μg 0.2 μL -1 of nifedipine, followed by 25 pmol 0.2 μL -1 of ANG II, decreased ANG II-pressor effect. L-NAME potentiated the pressor effect of ANG II. 7-NIT injected prior to ANG II into the MnPO also potentiated the pressor effect of ANGII but with less intensity than that of L-NAME. SNP injected prior to ANG II blocked the pressor effect of ANG II. The potentiation action of L-NAME and 7-NIT on ANG II-pressor effect was blocked by prior injection of nifedipine. The results described in this study provide evidence that calcium channels play important roles in central ANG II-induced pressor effect. The structures containing NO in the brain, such as MnPO, include both endothelial and neuronal cells, which might be responsible for the influence of nifedipine on the pressor effect of ANG II. These data have shown the functional relationship between L-Type calcium channel and a free radical gas NO in the MnPO, on the control of ANG II-induced pressor effect acting in AT 1 and AT 2 receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Food restriction (FR) has been shown to impair myocardial performance. However, the mechanisms behind these changes in myocardial function due to FR remain unknown. Since myocardial L-type Ca2+ channels may contribute to the cardiac dysfunction, we examined the influence of FR on L-type Ca2+ channels. Male 60-day-old Wistar rats were fed a control or a restricted diet (daily intake reduced to 50% of the amount of food consumed by the control group) for 90 days. Myocardial performance was evaluated in isolated left ventricular papillary muscles. The function of myocardial L-type Ca2+ channels was determined by using a pharmacological Ca2+ channel blocker, and changes in the number of channels were evaluated by mRNA and protein expression. FR decreased final body weights, as well as weights of the left and right ventricles. The Ca2+ channel blocker diltiazem promoted a higher blockade on developed tension in FR groups than in controls. The protein content of L-type Ca2+ channels was significantly diminished in FR rats, whereas the mRNA expression was similar between groups. These results suggest that the myocardial dysfunction observed in previous studies with FR animals could be caused by downregulation of L-type Ca2+ channels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schizophrenia is an idiopathic mental disorder with a heritable component and a substantial public health impact. We conducted a multi-stage genome-wide association study (GWAS) for schizophrenia beginning with a Swedish national sample (5,001 cases and 6,243 controls) followed by meta-Analysis with previous schizophrenia GWAS (8,832 cases and 12,067 controls) and finally by replication of SNPs in 168 genomic regions in independent samples (7,413 cases, 19,762 controls and 581 parent-offspring trios). We identified 22 loci associated at genome-wide significance; 13 of these are new, and 1 was previously implicated in bipolar disorder. Examination of candidate genes at these loci suggests the involvement of neuronal calcium signaling. We estimate that 8,300 independent, mostly common SNPs (95% credible interval of 6,300-10,200 SNPs) contribute to risk for schizophrenia and that these collectively account for at least 32% of the variance in liability. Common genetic variation has an important role in the etiology of schizophrenia, and larger studies will allow more detailed understanding of this disorder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FUNDAMENTO: Treinamento físico (TF) aumenta a sensibilidade dos hormônios tireoidianos (HT) e a expressão gênica de estruturas moleculares envolvidas no movimento intracelular de cálcio do miocárdio, enquanto a restrição alimentar (RIA) promove efeitos contrários ao TF. OBJETIVO: Avaliar os efeitos da associação TF e RIA sobre os níveis plasmáticos dos HT e a produção de mRNA dos receptores HT e estruturas moleculares do movimento de cálcio do miocárdio de ratos. MÉTODOS: Utilizaram-se ratos Wistar Kyoto divididos em: controle (C, n = 7), RIA (R50, n = 7), exercício físico (EX, n = 7) e exercício físico + RIA (EX50, n = 7). A RIA foi de 50% e o TF foi natação (1 hora/dia, cinco sessões/semana, 12 semanas consecutivas). Avaliaram-se as concentrações séricas de triiodotironina (T3), tiroxina (T4) e hormônio tireotrófico (TSH). O mRNA da bomba de cálcio do retículo sarcoplasmático (SERCA2a), fosfolamban (PLB), trocador Na+/Ca+2 (NCX), canal lento de cálcio (canal-L), rianodina (RYR), calsequestrina (CQS) e receptor de HT (TRα1 e TRβ1) do miocárdio foram avaliados por reação em cadeia da polimerase (PCR) em tempo real. RESULTADOS: RIA reduziu o T4, TSH e mRNA do TRα1 e aumentou a expressão da PLB, NCX e canal-L. TF aumentou a expressão do TRβ1, canal-L e NCX. A associação TF e RIA reduziu T4 e TSH e aumentou o mRNA do TRβ1, SERCA2a, NCX, PLB e correlação do TRβ1 com a CQS e NCX. CONCLUSÃO: Associação TF e RIA aumentou o mRNA das estruturas moleculares cálcio transiente, porém o eixo HT-receptor não parece participar da transcrição gênica dessas estruturas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peptides isolated from animal venoms have shown the ability to regulate pancreatic beta cell function. Characterization of wasp venoms is important, since some components of these venoms present large molecular variability, and potential interactions with different signal transduction pathways. For example, the well studied mastoparan peptides interact with a diversity of cell types and cellular components and stimulate insulin secretion via the inhibition of ATP dependent K + (K ATP) channels, increasing intracellular Ca 2+ concentration. In this study, the insulin secretion of isolated pancreatic islets from adult Swiss mice was evaluated in the presence of synthetic Agelaia MP-I (AMP-I) peptide, and some mechanisms of action of this peptide on endocrine pancreatic function were characterized. AMP-I was manually synthesized using the Fmoc strategy, purified by RP-HPLC and analyzed using ESI-IT-TOF mass spectrometry. Isolated islets were incubated at increasing glucose concentrations (2.8, 11.1 and 22.2 mM) without (Control group: CTL) or with 10 μM AMP-I (AMP-I group). AMP-I increased insulin release at all tested glucose concentrations, when compared with CTL (P < 0.05). Since molecular analysis showed a potential role of the peptide interaction with ionic channels, insulin secretion was also analyzed in the presence of 250 μM diazoxide, a K ATP channel opener and 10 μM nifedipine, a Ca 2+ channel blocker. These drugs abolished insulin secretion in the CTL group in the presence of 2.8 and 11.1 mM glucose, whereas AMP-I also enhanced insulin secretory capacity, under these glucose conditions, when incubated with diazoxide and nifedipine. In conclusion, AMP-I increased beta cell secretion without interfering in K ATP and L-type Ca 2+ channel function, suggesting a different mechanism for this peptide, possibly by G protein interaction, due to the structural similarity of this peptide with Mastoparan-X, as obtained by modeling. © 2012 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac or ventricular remodeling is characterized by molecular, cellular, and interstitial alterations that lead to changes in heart size, mass, geometry and function in response to a given insult. Currently, tobacco smoke exposure is recognized as one of these insults. Indeed, tobacco smoke exposure induces the enlargement of the left-sided cardiac chambers, myocardial hypertrophy, and ventricular dysfunction. Potential mechanisms for these alterations include hemodynamic and neurohormonal changes, oxidative stress, inflammation, nitric oxide bioavailability, matrix metalloproteinases and mitogen-activated protein kinase activation. This review will focus on the concepts, relevance, and potential mechanisms of cardiac remodeling induced by tobacco smoke. © 2012 Bentham Science Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gomesin is an antimicrobial peptide isolated from hemocytes of a common Brazilian tarantula spider named Acanthoscurriagomesiana. This peptide exerts antitumor activity in vitro and in vivo by an unknown mechanism. In this study, the cytotoxic mechanism of gomesin in human neuroblastoma SH-SY5Y and rat pheochromocytoma PC12 cells was investigated. Gomesin induced necrotic cell death and was cytotoxic to SH-SY5Y and PC12 cells. The peptide evoked a rapid and transient elevation of intracellular calcium levels in Fluo-4-AM loaded PC12 cells, which was inhibited by nimodipine, an L-type calcium channel blocker. Preincubation with nimodipine also inhibited cell death induced by gomesin in SH-SY5Y and PC12 cells. Gomesin-induced cell death was prevented by the pretreatment with MAPK/ERK, PKC or PI3K inhibitors, but not with PKA inhibitor. In addition, gomesin generated reactive oxygen species (ROS) in SH-SY5Y cells, which were blocked with nimodipine and MAPK/ERK, PKC or PI3K inhibitors. Taken together, these results suggest that gomesin could be a useful anticancer agent, which mechanism of cytotoxicity implicates calcium entry through L-type calcium channels, activation of MAPK/ERK, PKC and PI3K signaling as well as the generation of reactive oxygen species. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obesity has been shown to impair myocardial performance. Nevertheless, the mechanisms underlying the participation of calcium (Ca2+) handling on cardiac dysfunction in obesity models remain unknown. L-type Ca2+ channels and sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA2a), may contribute to the cardiac dysfunction induced by obesity. The purpose of this study was to investigate whether myocardial dysfunction in obese rats is related to decreased activity and/or expression of L-type Ca2+ channels and SERCA2a. Male 30-day-old Wistar rats were fed standard (C) and alternately four palatable high-fat diets (Ob) for 15 weeks. Obesity was determined by adiposity index and comorbidities were evaluated. Myocardial function was evaluated in isolated left ventricle papillary muscles under basal conditions and after inotropic and lusitropic maneuvers. L-type Ca2+ channels and SERCA2a activity were determined using specific blockers, while changes in the amount of channels were evaluated by Western blot analysis. Phospholamban (PLB) protein expression and the SERCA2a/PLB ratio were also determined. Compared with C rats, the Ob rats had increased body fat, adiposity index and several comorbidities. The Ob muscles developed similar baseline data, but myocardial responsiveness to post-rest contraction stimulus and increased extracellular Ca2+ was compromised. The diltiazem promoted higher inhibition on developed tension in obese rats. In addition, there were no changes in the L-type Ca2+ channel protein content and SERCA2a behavior (activity and expression). In conclusion, the myocardial dysfunction caused by obesity is related to L-type Ca2+ channel activity impairment without significant changes in SERCA2a expression and function as well as L-type Ca2+ protein levels. J. Cell. Physiol. 226: 2934-2942, 2011. (C) 2011 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the voltage dependent calcium channels and nitric oxide involvement in angiotensin II-induced pressor effect. The antipressor action of L-Type calcium channel antagonist, nifedipine, has been studied when it was injected into the third ventricle prior to angiotensin II. The influence of nitric oxide on nifedipine antipressor action has also been studied by utilizing N(W)-nitro-L-arginine methyl ester (LNAME) (40 mu g/0.2 mu l) a nitric oxide synthase inhibitor and L-arginine ( 20 mu g/0.2 mu l), a nitric oxide donor agent. Adult male Holtzman rats weighting 200-250 g, with cannulae implanted into the third ventricle were injected with angiotensin II. Angiotensin II produced an elevation in mean arterial pressure and a decreased in heart rate. Such effects were potentiated by the prior injection of LNAME. L-arginine and nifedipine blocked the effects of angiotensin II. These data showed the involvement of L-Type calcium channel and a free radical gas nitric oxide in the central control of angiotensin II-induced pressor effect. This suggested that L-Type calcium channel of the circunventricular structures of central nervous system participated in both short and long term neuronal actions of ANG II with the influence of nitrergic system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction. Premature ejaculation is one of the most common male sexual dysfunctions. Current pharmacological treatments involve reduction in penile sensitivity by local anesthetics or increase of ejaculatory threshold by selective serotonin reuptake inhibitors. a1-Adrenoceptors (a1-ARs) and L-type calcium channels are expressed in the smooth muscles of the male reproductive tract, and their activations play an important role in the physiological events involved in the seminal emission phase of ejaculation.Aim. To evaluate if the inhibition of the contractility of the vas deferens and seminal vesicle by alpha(1)-AR antagonism or the L-type calcium channel blockade can delay ejaculation.Methods. The effects of the alpha(1)-AR antagonist tamsulosin and of the L-type calcium channel blockers, nifedipine and (S)-(+)-niguldipine, on contractions induced by norepinephrine in the rat vas deferens and seminal vesicles in vitro and on the ejaculation latency of male rats in behavioral mating tests were evaluated.Main Outcome Measure. Tension development of vas deferens and seminal vesicles in response to norepinephrine in vitro and behavioral mating parameters were quantified.Results. Tension development of vas deferens and seminal vesicle to alpha(1)-AR activation was significantly inhibited by tamsulosin, nifedipine, and (S)-(+)-niguldipine. Tamsulosin displayed insurmountable antagonism of contractions induced by norepinephrine in the rat vas deferens and seminal vesicle. Ejaculation latency of male rats was not modified by tamsulosin, nifedipine, or (S)-(+)-niguldipine; however, both the number and weight of the seminal plugs recovered from female rats mated with male rats treated with tamsulosin were significantly reduced.Conclusion. Seminal emission impairment by inhibition of vas deferens or seminal vesicle contractility by L-type calcium channel blockade or alpha(1)-AR antagonism is not able to delay the ejaculation. de Almeida Kiguti LR and Pupo AS. Investigation of the effects of alpha(1)-adrenoceptor antagonism and L-type calcium channel blockade on ejaculation and vas deferens and seminal vesicle contractility in vitro. J Sex Med 2012; 9: 159-168.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many potential diltiazem related L-VDCC blockers were developed using a multidisciplinary approach. This current study was to investigate and compare diltiazem with to the newly developed compounds by mouse Langendorff-perfused heart, Ca2+-transient and on recombinant L-VDCC. Twenty particular compounds were selected by the ligand-based virtual screening procedure (LBVS). From these compounds, five of them (5b, M2, M7, M8 and P1) showed a potent and selective inotropic activity on guinea-pig left atria driven 1 Hz. Further assays displayed an interesting negative inotropic effect of M2, M8, P1 and M7 on guinea pig isolated left papillary muscle driven at 1 Hz, a relevant vasorelaxant activity of 5b, M2, M7, M8 and P1 on K+-depolarized guinea-pig ileum longitudinal smooth muscle and a significant inhibition of contraction of 5b, M2, M8 and P1 on carbachol stimulated ileum longitudinal smooth muscle. Wild-type human heart and rabbit lung α1 subunits were expressed (combined with the regulatory α2δ and β3 subunits) in Xenopus Leavis oocytes using a two-electrode voltage clamp technique. Diltiazem is a benzothiazepine Ca2+ channel blocker used clinically for its antihypertensive and antiarrhythmic effects. Previous radioligand binding assays revealed a complex interaction with the benzothiazepine binding site for M2, M7 and M8. (Carosati E. et al. J. Med Chem. 2006, 49; 5206). In agreement with this findings, the relative order of increased rates of contraction and relaxation at lower concentrations s(≤10-6M) in unpaced hearts was M7>M2>M8>P1. Similar increases in Ca2+ transient were observed in cardiomyocytes. Diltiazem showed negative inotropic effects whereas 5b had no significant effect. Diltiazem blocks Ca2+current in a use-dependent manner and facilitates the channel by accelerating the inactivation and decelerating the recovery from inactivation. In contrast to diltiazem, the new analogs had no pronounced use-dependence. Application of 100 μM M8, M2 showed ~ 10% tonic block; in addition, M8, M2 and P1 shifted the steady state inactivation in hyperpolarized direction and the current inactivation time was significantly decreased compared with control (219.6 ± 11.5 ms, 226 ± 14.5 vs. 269 ± 12.9 vs. 199.28 ± 8.19 ms). Contrary to diltiazem, the recovery from the block by M8 and M2 was comparable to control. Only P1 showed a significantly decrease of the time for the recovery from inactivation. All of the compounds displayed the same sensitivity on the Ca2+ channel rabbit lung α1 except P1. Taken together, these findings suggest that M8, M2 and P1 might directly decrease the binding affinity or allow rapid dissociation from the benzothiazepine binding site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’inflammation: Une réponse adaptative du système immunitaire face à une insulte est aujourd’hui reconnue comme une composante essentielle à presque toutes les maladies infectieuses ou autres stimuli néfastes, tels les dommages tissulaires incluant l’infarctus du myocarde et l’insuffisance cardiaque. Dans le contexte des maladies cardiovasculaires, l’inflammation se caractérise principalement par une activation à long terme du système immunitaire, menant à une faible, mais chronique sécrétion de peptides modulateurs, appelés cytokines pro-inflammatoires. En effet, la littérature a montré à plusieurs reprises que les patients souffrant d’arythmies et de défaillance cardiaque présentent des taux élevés de cytokines pro-inflammatoires tels le facteur de nécrose tissulaire alpha (TNFα), l’interleukine 1β (IL-1β) et l’interleukine 6. De plus, ces patients souffrent souvent d’une baisse de la capacité contractile du myocarde. Le but de notre étude était donc de déterminer si un lien de cause à effet existe entre ces phénomènes et plus spécifiquement si le TNFα, l’IL-1β et l’IL-6 peuvent affecter les propriétés électriques et contractiles du cœur en modulant le courant Ca2+ de type L (ICaL) un courant ionique qui joue un rôle primordial au niveau de la phase plateau du potentiel d’action ainsi qu’au niveau du couplage excitation-contraction. Les possibles méchansimes par lesquels ces cytokines exercent leurs effets seront aussi explorés. Pour ce faire, des cardiomyocytes ventriculaires de souris nouveau-nées ont été mis en culture et traités 24 heures avec des concentrations pathophysiologiques (30 pg/mL) de TNFα, IL-1β ou IL-6. Des enregistrements de ICaL réalisés par la technique du patch-clamp en configuration cellule entière ont été obtenus par la suite et les résultats montrent que le TNFα n’affecte pas ICaL, même à des concentrations plus élevées (1 ng/mL). En revanche, l’IL-1β réduisait de près de 40% la densité d’ICaL. Afin d’examiner si le TNFα et l’IL-1β pouvaient avoir un effet synergique, les cardiomyocytes ont été traité avec un combinaison des deux cytokines. Toutefois aucun effet synergique sur ICaL n’a été constaté. En outre, l’IL-6 réduisait ICaL significativement, cependant la réduction de 20% était moindre que celle induite par IL-1β. Afin d’élucider les mécanismes sous-jacents à la réduction de ICaL après un traitement avec IL-1β, l’expression d’ARNm de CaV1.2, sous-unité α codante pour ICaL, a été mesurée par qPCR et les résultats obtenus montrent aucun changement du niveau d’expression. Plusieurs études ont montré que l’inflammation et le stress oxydatif vont de pair. En effet, l’imagerie confocale nous a permis de constater une augmentation accrue du stress oxydatif induit par IL-1β et malgré un traitement aux antioxydants, la diminution de ICaL n’a pas été prévenue. Cette étude montre qu’IL-1β et IL-6 réduisent ICaL de façon importante et ce indépendamment d’une régulation transcriptionelle ou du stress oxydatif. De nouvelles données préliminaires suggèrent que ICaL serait réduit suite à l’activation des protéines kinase C mais des études additionelles seront nécessaires afin d’étudier cette avenue. Nos résultats pourraient contribuer à expliquer les troubles du rythme et de contractilité observés chez les patients souffrant de défaillance cardiaque.