976 resultados para Xanthine oxidase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyphenol oxidase (PPO) catalyzes the oxidation of o-diphenols to their respective quinones. The quinones autopolymerize to form dark pigments, an undesired effect. PPO is therefore the target for the development of antibrowning and antimelanization agents. A series of phenolic compounds experimentally evaluated for their binding affinity and inhibition constants were computationally docked to the active site of catechol oxidase. Docking studies suggested two distinct modes of binding, dividing the docked ligands into two groups. Remarkably, the first group corresponds to ligands determined to be substrates and the second group corresponds to reversible inhibitors. Analyses of the complexes provide structural explanations for correlating subtle changes in the position and nature of the substitutions on o-diphenols to their functional properties as substrates and inhibitors. Higher reaction rates and binding are reckoned by additional interactions of the substrates with key residues that line the hydrophobic cavity. The docking results suggest that inhibition of oxidation stems from an interaction between the aromatic carboxylic acid group and the apical His 109 of the four coordinates of the trigonal pyramidal coordination polyhedron of CuA. The spatial orientation of the hydroxyl in relation to the carboxylic group either allows a perfect fit in the substrate cavity, leading to inhibition, or because of a steric clash flips the molecule vertically, facilitating oxidation. This is the first study to explain, at the molecular level, the determinants Of substrate and inhibitor specificity of a catechol oxidase, thereby providing a platform for the design of selective inhibitors useful to both the food and pharmaceutical industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The terminal step in the oxidation of anthranilic acid to catechol by anthranilic acid oxidase system from Tecoma stans, which converts o-aminophenol to catechol has been studied in detail. The reaction catalyses the conversion of one molecule of o-aminophenol to one molecule each of ammonia and catechol. The partially purified enzyme has a pH optimum of 6·2 in citrate-phosphate buffer and a temperature optimum of 45°. The metal ions, Mg2+, Co2+ and Fe3+ were inhibitory to the reaction. Metal chelating agents like 8-hydroxyquinoline, o-phenanthroline, and diethyldithiocarbamate, caused a high degree of inhibition. A sulfhydryl requirement for the reaction was inferred from the inhibition of the reaction by p-chloromercuribenzoate and its reversal with GSH. Atebrin inhibition was reversed by addition of FAD to the reaction mixture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence for the presence and possible participation of a flavoprotein, coenzyme Q, and a cytochrome in the oxidation of NADH in the cell-free extracts of Agrobacterium tumefaciens was presented. Coenzyme Q10 was established as the homologue by several criteria. The characteristics of the cytochrome showed that it was different from the b and c groups of cytochromes. Amytal, antimycin A, and cyanide inhibited the oxidation of NADH, and from their effects on the electron transport components the following sequence has been proposed: NADH → flavoprotein → coenzyme Q10 → cytochrome oxygen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An enzyme system which catalysed the conversion of anthranilic acid to catechol has been purified 20-fold from a cell-free leaf extract of Tecoma stans. The optimum substrate concentration was 10−3 M and optimum temperature for the reaction was 45°. The presence of a multi-enzyme system was inferred from inhibition studies. The formation of catechol was inhibited by Mg2+, Zn2+, and Co2+ ions, whereas anthranilic acid disappearance was not affected to the same extent. The effect of metal chelating agents like EDTA, cyanide and pyrophosphate showed a similar trend. PCMB inhibited catechol formation but had no effect on anthranilic acid disappearance. The reaction was not inhibited by catalase, nor was it activated by peroxide-donating systems. This ruled out the possibility of peroxidative type of reaction. The overall reaction is markedly activated by NADPH and THFA. This multi-enzyme was separated into three different components, by fractionation with Alumina Cγ and calcium phosphate gels. The overall reaction catalysed by these components can be represented as anthranilic acid→3-hydroxy anthranilic acid→o-aminophenol→catechol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of an indole oxidase (indole: O2 oxidoreductase) was detected in the leaf extracts of Tecoma stans. The end product of the reaction was identified as anthranil. Formylaminobenzaldehyde, and o- aminobenzaldehyde were detected as intermediates in the overall conversion. Oxygen-uptake studies established that 3 atoms of oxygen were consumed in the formation of anthranil form I molecule of indole. The enzyme showed an absolute requirement for FAD and Cu2+ for maximum activity. FMN was ineffective as a cofactor. The enzyme had an optimum pH of 5.0. Inhibition studies with GSH and p-chloromericuribenzoate showed that a sulfhydrylcupric-ion complex at the active centre is highly essential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enzymes offer many advantages in industrial processes, such as high specificity, mild treatment conditions and low energy requirements. Therefore, the industry has exploited them in many sectors including food processing. Enzymes can modify food properties by acting on small molecules or on polymers such as carbohydrates or proteins. Crosslinking enzymes such as tyrosinases and sulfhydryl oxidases catalyse the formation of novel covalent bonds between specific residues in proteins and/or peptides, thus forming or modifying the protein network of food. In this study, novel secreted fungal proteins with sequence features typical of tyrosinases and sulfhydryl oxidases were iden-tified through a genome mining study. Representatives of both of these enzyme families were selected for heterologous produc-tion in the filamentous fungus Trichoderma reesei and biochemical characterisation. Firstly, a novel family of putative tyrosinases carrying a shorter sequence than the previously characterised tyrosinases was discovered. These proteins lacked the whole linker and C-terminal domain that possibly play a role in cofactor incorporation, folding or protein activity. One of these proteins, AoCO4 from Aspergillus oryzae, was produced in T. reesei with a production level of about 1.5 g/l. The enzyme AoCO4 was correctly folded and bound the copper cofactors with a type-3 copper centre. However, the enzyme had only a low level of activity with the phenolic substrates tested. Highest activity was obtained with 4-tert-butylcatechol. Since tyrosine was not a substrate for AoCO4, the enzyme was classified as catechol oxidase. Secondly, the genome analysis for secreted proteins with sequence features typical of flavin-dependent sulfhydryl oxidases pinpointed two previously uncharacterised proteins AoSOX1 and AoSOX2 from A. oryzae. These two novel sulfhydryl oxidases were produced in T. reesei with production levels of 70 and 180 mg/l, respectively, in shake flask cultivations. AoSOX1 and AoSOX2 were FAD-dependent enzymes with a dimeric tertiary structure and they both showed activity on small sulfhydryl compounds such as glutathione and dithiothreitol, and were drastically inhibited by zinc sulphate. AoSOX2 showed good stabil-ity to thermal and chemical denaturation, being superior to AoSOX1 in this respect. Thirdly, the suitability of AoSOX1 as a possible baking improver was elucidated. The effect of AoSOX1, alone and in combi-nation with the widely used improver ascorbic acid was tested on yeasted wheat dough, both fresh and frozen, and on fresh water-flour dough. In all cases, AoSOX1 had no effect on the fermentation properties of fresh yeasted dough. AoSOX1 nega-tively affected the fermentation properties of frozen doughs and accelerated the damaging effects of the frozen storage, i.e. giving a softer dough with poorer gas retention abilities than the control. In combination with ascorbic acid, AoSOX1 gave harder doughs. In accordance, rheological studies in yeast-free dough showed that the presence of only AoSOX1 resulted in weaker and more extensible dough whereas a dough with opposite properties was obtained if ascorbic acid was also used. Doughs containing ascorbic acid and increasing amounts of AoSOX1 were harder in a dose-dependent manner. Sulfhydryl oxidase AoSOX1 had an enhancing effect on the dough hardening mechanism of ascorbic acid. This was ascribed mainly to the produc-tion of hydrogen peroxide in the SOX reaction which is able to convert the ascorbic acid to the actual improver dehydroascorbic acid. In addition, AoSOX1 could possibly oxidise the free glutathione in the dough and thus prevent the loss of dough strength caused by the spontaneous reduction of the disulfide bonds constituting the dough protein network. Sulfhydryl oxidase AoSOX1 is therefore able to enhance the action of ascorbic acid in wheat dough and could potentially be applied in wheat dough baking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earlier studies in this laboratory had shown that the malarial parasite can synthesize heme de novo and inhibition of the pathway leads to death of the parasite. It has been proposed that the pathway for the biosynthesis of heme in Plasmodium falciparum is unique involving three different cellular compartments, namely mitochondrion, apicoplast and cytosol. Experimental evidences are now available for the functionality and localization of all the enzymes of this pathway, except protoporphyrinogen IX oxidase (PfPPO), the penultimate enzyme. In the present study. PfPPO has been cloned, expressed and shown to be localized to the mitochondrion by immunofluorescence microscopy. Interestingly, the enzyme has been found to be active only under anaerobic conditions and is dependent on electron transport chain (ETC) acceptors for its activity. The native enzyme present in the parasite is inhibited by the ETC inhibitors, atovaquone and antimycin. Atovaquone, a well known inhibitor of parasite dihydroorotate dehydrogenase, dependent on the ETC, inhibits synthesis of heme as well in P. falciparum culture. A model is proposed to explain the ETC dependence of both the pyrimidine and heme-biosynthetic pathways in P. falciparum. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A unique hybrid pathway has been proposed for de novo heme biosynthesis in Plasmodium falciparum involving three different compartments of the parasite, namely mitochondrion, apicoplast and cytosol. While parasite mitochondrion and apicoplast have been shown to harbor key enzymes of the pathway, there has been no experimental evidence for the involvement of parasite cytosol in heme biosynthesis. In this study, a recombinant P. falciparum coproporphyrinogen III oxidase (rPfCPO) was produced in E. coli and confirmed to be active under aerobic conditions. rPfCPO behaved as a monomer of 61 kDa molecular mass in gel filtration analysis. Immunofluorescence studies using antibodies to rPfCPO suggested that the enzyme was present in the parasite cytosol. These results were confirmed by detection of enzyme activity only in the parasite soluble fraction. Western blot analysis with anti-rPfCPO antibodies also revealed a 58 kDa protein only in this fraction and not in the membrane fraction. The cytosolic presence of PfCPO provides evidence for a hybrid heme-biosynthetic pathway in the malarial parasite. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of natural xanthine derivates in medicine is complicated with their physical properties. Theobromine is poorly soluble while theophylline is highly sensitive to hydration. The aim of this study was to improve bioavailability of xanthines by co-crystallization, theophylline was also cocrystallized with carboxylic acids (capric, citric, glutaric, malenic, malonic, oxalic, stearic, succinic) and HPMC. Co-crystallization was performed by slow evaporation and ball milling. Physical stability was checked by wet granulation and water sorption methods, solubility was measured by intrinsic tablet dissolution. Theobromine formed co-crystal with other xanthines and theophylline interacted with all acids except stearic and HPMC, the latter showed alternative interactions based on hydrogen bonding. Hydration resistance was good in theophylline:succinic acid co-crystal and excellent in complexes containing capric, stearic acids and HPMC. Theophylline:HPMC showed improved solubility. The reported approach can promote use of xanthines and can be recommended for other compounds with similar problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chill treatment of potato tubers for 8 days induced mitochondrial O-2 consumption by cyanide-insensitive alternative oxidase (AOX). About half of the total O-2 consumption in such mitochondria was found to be sensitive to salicylhydroxamate (SHAM), a known inhibitor of AOX activity. Addition of catalase to the reaction mixture of AOX during the reaction decreased the rate of SHAM-sensitive O-2 consumption by nearly half, and addition at the end of the reaction released half of the O-2 consumed by AOX, both typical of catalase action on H2O2. This reaffirmed that the product of reduction of O-2 by plant AOX was H2O2 as found earlier and not H2O as reported in some recent reviews.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Addition of NADH inhibited the peroxidative loss of scopoletin in presence of horseradish peroxidase and H2O2 and decreased the ratio of scopoletin (consumed):H2O2 (added). Concomitantly NADH was oxidized and oxygen was consumed with a stoichiometry of NADH: O-2 of 2:1. On step-wise addition of a small concentration of H2O2 a high rate of NADH oxidation was obtained for a progressively decreasing time period followed by termination of the reaction with NADH:H2O2 ratio decreasing from about 40 to 10. The rate of NADH oxidation increased linearly with increase in scopoletin concentration. Other phenolic compounds including p-coumarate also supported this reaction to a variable degree. A 418-nm absorbing compound;d accumulated during oxidation of NADH. The effectiveness of a small concentration of H2O2 in supporting NADH oxidation increased in presence of SOD and decreased in presence of cytochrome c, but the reaction terminated even in their presence. The results indicate that the peroxidase is not continuously generating H2O2 during scopolerin-mediated NADH oxidation and that both peroxidase and oxidase reactions occur simultaneously competing for an active form of the enzyme.