914 resultados para Vaccine carriers


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Particulates with specific sizes and characteristics can induce potent immune responses by promoting antigen uptake of appropriate immuno-stimulatory cell types. Magnetite (Fe3O4) nanoparticles have shown many potential bioapplications due to their biocompatibility and special characteristics. Here, superparamagnetic Fe3O4 nanoparticles (SPIONs) with high magnetization value (70emug-1) were stabilized with trisodium citrate and successfully conjugated with a model antigen (ovalbumin, OVA) via N,N'-carbonyldiimidazole (CDI) mediated reaction, to achieve a maximum conjugation capacity at approximately 13μgμm-2. It was shown that different mechanisms governed the interactions between the OVA molecules and magnetite nanoparticles at different pH conditions. We evaluated as-synthesized SPION against commercially available magnetite nanoparticles. The cytotoxicity of these nanoparticles was investigated using mammalian cells. The reported CDI-mediated reaction can be considered as a potential approach in conjugating biomolecules onto magnetite or other biodegradable nanoparticles for vaccine delivery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Mycoplasma hyopneumoniae ribonucleotide reductase R2 subunit (NrdF) gene fragment was cloned into eukaryotic and prokaryotic expression vectors and its immunogenicity evaluated in mice immunized orally with attenuated Salmonella typhimurium aroA CS332 harboring either of the recombinant expression plasmids. We found that NrdF is highly conserved among M. hyopneumoniae strains. The immunogenicity of NrdF was examined by analyzing antibody responses in sera and lung washes, and the cell-mediated immune (CMI) response was assessed by determining the INF-[gamma] level produced by splenocytes upon in vitro stimulation with NrdF antigen. S. typhimurium expressing NrdF encoded by the prokaryotic expression plasmid (pTrcNrdF) failed to elicit an NrdF-specific serum or secretory antibody response, and IFN-[gamma] was not produced. Similarly, S. typhimurium carrying the eukaryotic recombinant plasmid encoding NrdF (pcNrdF) did not induce a serum or secretory antibody response, but did elicit significant NrdF-specific IFN-[gamma] production, indicating induction of a CMI response. However, analysis of immune responses against the live vector S. typhimurium aroA CS332 showed a serum IgG response but no mucosal IgA response in spite of its efficient invasiveness in vitro. In the present study we show that the DNA vaccine encoding the M. hyopneumoniae antigen delivered orally via a live attenuated S. typhimurium aroA can induce a cell-mediated immune response. We also indicate that different live bacterial vaccine carriers may have an influence on the type of the immune response induced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Whooping cough still represents a major health problem, despite the use of effective vaccines for several decades. Being classically a typical childhood disease, whooping cough in young adults is now more common than it used to be, suggesting that protection after vaccination wanes during adolescence. As an alternative to the current vaccines, we wish to develop live attenuated vaccines to be delivered by the nasal route, such as to mimic the natural route of infection and to induce long lasting immunity. Bordetella pertussis, the etiological agent of whooping cough, produces a number of virulence factors, including toxins. Its recently determined genome sequence makes it now possible to apply functional genomics, such as transcriptomics and systematic knock-out mutagenesis. The expression of most known B. pertussis virulence genes is controlled by the two-component system BvgA/S. DNA microarray analyses have led to the identification of novel genes in the BvgA/S regulon, some of which are activated by BvgA/S and others are repressed by BvgA/S. In addition, some genes appear to be differentially modulated by nicotinic acid and MgSO4, both known to modulate the expression of BvgA/S-regulated genes. Among others, the functional genomics approach has uncovered two strongly BvgA/S-activated genes, named hotA and hotB (for 'homolog of toxin'), the products of which show high sequence similarities to pertussis toxin subunits. The identification of the full array of virulence factors, as well as an integrated understanding of the bacterial physiology should allow us to design attenuated B. pertussis strains useful for intranasal vaccination. A first generation of attenuated strains has already shown full protection in mice after a single intranasal administration. Such strains may also serve as vaccine carriers for heterologous antigens, in order to vaccinate against several different pathogens simultaneously.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese de doutoramento, Farmácia (Tecnologia Farmacêutica), Universidade de Lisboa, Faculdade de Farmácia, 2016

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This review focuses on the use of particulate delivery systems for the purposes of immunization. This includes poly(lactide-co-glycolide) (PLGA), ISCOMs, liposomes, niosomes, virosomes, chitosan, and other biodegradable polymers. These systems are evaluated in terms of their use as carriers for protein subunit and DNA vaccines. There is an extensive focus on recent literature, the understanding of biological interactions, and relation of this to our present understanding of immunological mechanisms of action. In addition, there is consideration of formulation techniques including emulsification, solvent diffusion, DNA complexation, and entrapment. The diversity of formulation strategies presented is a testament to the exponential growth and interest in the area of vaccine delivery systems. A case study for the application of particulate vaccine carriers is assessed in terms of vaccine development and recent insights into the possible design and application of vaccines against two of the most important pathogens that threaten mankind and for which there is a significant need: Mycobacterium tuberculosis and human immunodeficiency virus. This review addresses the rationale for the use of particulate delivery systems in vaccine design in the context of the diversity of carriers for DNA- and protein-based vaccines and their potential for application in terms of the critical need for effective vaccines. © 2005 by Begell House, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oral administration of dry vaccine formulations is acknowledged to offer major clinical and logistical benefits by eliminating the cold chain required for liquid preparations. A model antigen, bovine serum albumin (BSA) was encapsulated in alginate microspheres using aerosolisation. Hydrated microspheres 25 to 65 μm in size with protein loading of 3.3 % w/w were obtained. Environmental scanning electron microscopy indicated a stabilizing effect of encapsulated protein on alginate hydrogels revealed by an increase in dehydration resistance. Freeze drying of alginate microspheres without use of a cryoprotectant resulted in fragmentation and subsequent rapid loss of the majority of the protein load in simulated intestinal fluid in 2 h, whereas intact microspheres were observed following freeze-drying of BSA-loaded microspheres in the presence of maltodextrin. BSA release from freeze-dried preparations was limited to less than 7 % in simulated gastric fluid over 2 h, while 90 % of the protein load was gradually released in simulated intestinal fluid over 10 h. SDS-PAGE analysis indicated that released BSA largely preserved its molecular weight. These findings demonstrate the potential for manufacturing freeze-dried oral vaccines using alginate microspheres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2009-2011, spread of a serotype O foot-and-mouth disease virus (FMDV) belonging to the South East Asia topotype led to the culling of over 3.5 million cattle and pigs in Japan and Korea. The O1 Manisa vaccine (belonging to the Middle East-South Asian topotype) was used at high potency in Korea to limit the expansion of the outbreak. However, no data are available on the spread of this virus or the efficacy of the O1 Manisa vaccine against this virus in sheep. In this study, the early protection afforded with a high potency (>6 PD50) FMD O1 Manisa vaccine against challenge with the O/SKR/2010 virus was tested in sheep. Sheep (n=8) were vaccinated 4 days prior to continuous direct-contact challenge with donor sheep. Donor sheep were infected with FMDV O/SKR/2010 by coronary band inoculation 24h prior to contact with the vaccinated animals, or unvaccinated controls (n=4). Three of the four control sheep became infected, two clinically. All eight O1 Manisa vaccinated sheep were protected from clinical disease. None had detectable antibodies to FMDV non-structural proteins (3ABC), no virus was isolated from nasal swabs, saliva or oro-pharyngeal fluid and none became carriers. Using this model of challenge, sheep were protected against infection as early as 4 days post vaccination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After the development of the viral-based prostate cancer vaccine, Ad5-PSA, much research has been orientated to help enhance the induced immune response by combining the vaccine with physical and chemical modulating agents, more specifically the polymers polyethylenimine (PEI), chitosan, and chitosan coated with CD3 complex antibodies; all previously shown to stimulate an immune response as isolated gene carriers. To compare the vaccine-induced immune responses between the naked vaccine and the polymer-vaccine combinations, a mouse model using the ovalbumin- specific Ad-OVA vaccine was tested using intracellular cytokine staining (ICS), tetramer staining, and cytotoxic T-cell lymphocyte assays to measure the activation of CD8+ T-cells, interferon gamma proteins (INFƒ×), and the induced cytotoxicity to ovalbumin. The Ad-OVA vaccine combined with both chitosan and chitosan with CD3 complex antibodies, both natural polymers, were found to induce similar immune responses to the naked vaccine while the vaccine combined with the synthetic polymer, PEI, diminished the immune response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review discusses various issues regarding vaccines:what are they and how they work, safety aspects, the role of adjuvants and carriers in vaccination, synthetic peptides as immunogens, and new technologies for vaccine development and delivery including the identification of novel adjuvants for mucosal vaccine delivery. There has been a recent increase of interest, in the use of lipids and carbohydrates as adjuvants, and so a particular emphasis is placed on adjuvants derived from lipids or carbohydrates, or from both. Copyright (C) 2003 European Peptide Society and John Wiley Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, much interest has focused on the significance of inducing not only systemic immunity but also good local immunity at susceptible mucosal surfaces. A new field of mucosal immunity has been established as information accumulates on gut-associated lymphoid tissue, bronchus-associated lymphoid tissue and nasal-associated lymphoid tissue (GALT, BALT and NALT, respectively) and on their role in both local and systemic immune responses. This project, following the line of investigation started by other workers, was designed to study the use of microspheres to deliver antigens by the mucosal routes (oral and nasal). Antigen-containing microspheres were prepared with PLA and PLGA, by either entrapment within the particles or adsorption onto the surface. The model protein antigens used in this work were mainly tetanus toxoid (TT), bovine serum albumin (BSA) and γ-globulins.In vitro investigations included the study of physicochemical properties of the particulate carriers as well as the assessment of stability of the antigen molecules throughout the formulation procedures. Good loading efficiencies were obtained with both formulation techniques, which did not affect the immunogenicity of the antigens studied. The influence of the surfactant employed on the microspheres' surface properties was demonstrated as well as its implications on the adsorption of proteins. Preparations containing protein adsorbed were shown to be slightly more hydrophobic than empty PLA microspheres, which can enhance the uptake of particles by the antigen presenting cells that prefer to associate with hydrophobic surfaces. Systemic and mucosal immune responses induced upon nasal, oral and intramuscular administration have been assessed and, when appropriate, compared with the most widely used vaccine adjuvant, aluminium hydroxide. The results indicate that association of TT with PLA microspheres through microencapsulation or adsorption procedures led to an enhancement of specific mucosal IgA and IgG and systemic IgG responses to the mucosal delivered antigens. Particularly, nasal administration of TT produced significantly higher serum levels of specific IgG in test animals, as compared to control groups, suggesting that this is a potential route for vaccination. This implies the uptake and transfer of particles through the nasal mucosa, which was further demonstrated by the presence in the blood stream of latex particles as early as 10 min after nasal administration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of liposomes as carriers of peptide, protein, and DNA vaccines requires simple, easy-to-scale-up technology capable of high-yield vaccine entrapment. Work from this laboratory has led to the development of techniques that can generate liposomes of various sizes, containing soluble antigens such as proteins and particulate antigens (e.g., killed or attenuated bacteria or viruses), as well as antigen-encoding DNA vaccines. Entrapment of vaccines is carried out by the dehydration-rehydration procedure which entails freeze-drying of a mixture of "empty" small unilamellar vesicles and free vaccines. On rehydration, the large multilamellar vesicles formed incorporate up to 90% or more of the vaccine used. When such liposomes are microfluidized in the presence of nonentrapped material, their size is reduced to about 100 nm in diameter, with much of the originally entrapped vaccine still associated with the vesicles. A similar technique applied for the entrapment of particulate antigens (e.g., Bacillus subtilis spores) consists of freeze-drying giant vesicles (4-5 microm in diameter) in the presence of spores. On rehydration and sucrose gradient fractionation of the suspension, up to 30% or more of the spores used are associated with generated giant liposomes of similar mean size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oral vaccines offer significant benefits due to the ease of administration, better patient compliance and non-invasive, needle-free administration. However, this route is marred by the harsh gastro intestinal environment which is detrimental to many vaccine formats. To address this, a range of delivery systems have been considered including bilosomes; these are bilayer vesicles constructed from non-ionic surfactants combined with the inclusion of bile salts which can stabilize the vesicles in the gastro intestinal tract by preventing membrane destabilization. The aim of this study was to investigate the effect of formulation parameters on bilosome carriers using Design of Experiments to select an appropriate formulation to assess in vivo. Bilosomes were constructed from monopalmitoylglycerol, cholesterol, dicetyl phosphate and sodium deoxycholate at different blends ratios. The optimized bilosome formulation was identified and the potential of this formulation as an oral vaccine delivery system were assessed in biodistribution and vaccine efficacy studies. Results showed that the larger bilosomes vesicles (~6 µm versus 2 µm in diameter) increased uptake within the Peyer's patches and were able to reduce median temperature differential change and promote a reduction in viral cell load in an influenza challenge study. © 2013 Informa UK, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Australian mosquitoes from which Japanese encephalitis virus (JEV) has been recovered (Culex annulirostris, Culex gelidus, and Aedes vigilax) were assessed for their ability to be infected with the ChimeriVax-JE vaccine, with yellow fever vaccine virus 17D (YF 17D) from which the backbone of ChimeriVax-JE vaccine is derived and with JEV-Nakayama. None of the mosquitoes became infected after being fed orally with 6.1 log(10) plaque-forming units (PFU)/mL of ChimeriVax-JE vaccine, which is greater than the peak viremia in vaccinees (mean peak viremia = 4.8 PFU/mL, range = 0-30 PFU/mL of 0.9 days mean duration, range = 0-11 days). Some members of all three species of mosquito became infected when fed on JEV-Nakayama, but only Ae. vigilax was infected when fed on YF 17D. The results suggest that none of these three species of mosquito are likely to set up secondary cycles of transmission of ChimeriVax-JE in Australia after feeding on a viremic vaccinee.