875 resultados para Sobrevivência neuronal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The caffeine is a mild psychostimulant that has positive cognitive effects at low doses, while promotes detrimental effects on these processes at higher doses. The episodic-like memory can be evaluated in rodents through hippocampus-dependent tasks. The dentate gyrus is a hippocampal subregion in which neurogenesis occurs in adults, and it is believed that this process is related to the function of patterns separation, such as the identification of spatial and temporal patterns when discriminating events. Furthermore, neurogenesis is influenced spatial and contextual learning tasks. Our goal was to evaluate the performance of male Wistar rats in episodic-like tasks after acute or chronic caffeine treatment (15mg/kg or 30mg/kg). Moreover, we assessed the chronic effect of the caffeine treatment, as well as the influence of the hippocampus-dependent learning tasks, on the survival of new-born neurons at the beginning of treatment. For this purpose, we used BrdU to label the new cells generated in the dentate gyrus. Regarding the acute treatment, we found that the saline group presented a tendency to have better spatial and temporal discrimination than caffeine groups. The chronic caffeine group 15 mg/kg (low dose) showed the best discrimination of the temporal aspect of episodic-like memory, whereas the chronic caffeine group 30mg/kg (high dose) was able to discriminate temporal order, only in a condition of greater difficulty. Assessment of neurogenesis using immunohistochemistry for evaluating survival of new-born neurons generated in the dentate gyrus revealed no difference among groups of chronic treatment. Thus, the positive mnemonic effects of the chronic caffeine treatment were not related to neuronal survival. However, another plastic mechanism could explain the positive mnemonic effect, given that there was no improvement in the acute caffeine groups

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The cortical development requires a precise process of proliferation, migration, survival and differentiation of newly formed neurons to finally achieve the development of a functional network. Different kinases, such as PKA, CaMKII, MAPK and PI3K, phosphorylate the transcription factors CREB, and thus activate it, inducing CREB-dependent gene expression. In order to identify the involvement of such signaling pathways mediated by CREB over neuronal differentiation and survival, in vitro experiments of cell culture were conducted using pharmacological kinase inhibitors and genetic techniques to express different forms of CREB (A-CREB and CREB-FY) in cortical neurons. Inhibition of PKA and CaMKII decreased the length of neuronal processes (neurites); whereas inhibition of MAPK did not affect the length, but increased the number of neurites. Blockade of PI3K do not appear to alter neuronal morphology, nor the soma size changed with the kinase blockades. CREB activation (CREB-FY) along with MAPK and PI3K blockades presented a negative side effect over neuritic growth and the expression of A-CREB leaded to a significant decrease in neuronal survival after 60h in vitro and mimicked some of the effects on neuronal morphology observed with PKA and CaMKII blockade. In summary the signaling through CREB influences the morphology of cortical neurons, particularly when phosphorylated by PKA, and CREB signaling is also important for survival of immature neurons prior to the establishment of fully functional synaptic contacts. Our data contribute to understanding the role of CREB signaling, activated by different routes, on survival and neuronal differentiation and may be valuable in the development of regenerative strategies in different neurological diseases

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese de mestrado, Neurociências, Faculdade de Medicina, Universidade de Lisboa, 2015

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese de mestrado, Neurociências, Faculdade de Medicina, Universidade de Lisboa, 2015

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Muitas similaridades existem entre isquemia cerebral e epilepsia a respeito de dano cerebral e mecanismos de autoproteção que são ativados próximos à lesão. Oxcarbazepina (OXC), droga anticonvulsivante, atua bloqueando os canais de sódio voltagem-dependentes, aumentando a condutância de potássio e modulando os canais de cálcio voltagem-dependentes. Nosso objetivo nesse trabalho foi analisar o perfil de neuroproteção da OXC e investigar o possível envolvimento da via de sinalização celular PI3-K (fosfatidil inositol 3-cinase), uma via conhecida por seus efeitos proliferativos e antiapoptótico. Para mimetizar uma isquemia, culturas organotípicas de fatias hipocampais de ratos Wistar de 6-8 dias foram expostas à privação de oxigênio e glicose (POG). A adição da OXC (30μM) antes da indução da lesão aumentou a sobrevivência neuronal no hipocampo de culturas organotípicas expostas a POG por 60 minutos, observado pela diminuição da incorporação de IP.Este efeito neuroprotetor foi prevenido por LY294002 (inibidor de PI3-K). Este resultado indica um possível envolvimento da via Akt na neuroproteção. Para investigar se a proteína Akt, uma cinase ativada pela PI3-K, estava envolvida na neuroproteção das células as condições de POG, analisamos a fosforilação e o imunoconteúdo dessa cinase em 1, 6 e 24 horas depois da reperfusão. Nenhuma alteração foi observada nesses parâmetros, sugerindo que, nesse caso, a fosforilação da Akt não está envolvida na neuroproteção mediada pela OXC. Da mesma maneira não foi observada alteração em 1, 6 e 24 horas na GSK-3β, uma cinase logo abaixo na via Akt, e pró-apoptótica, sugerindo que, nesse caso, a fosforilação da GSK-3β não está envolvida na neuroproteção mediada pela OXC. Juntos, os resultados deste trabalho mostram um claro efeito neuroprotetor da OXC contra a lesão isquêmica, que entretanto, não envolve a via de sinalização da Akt/GSK-3β. Embora a reversão da proteção ao tratamento, com o inibidor da PI3-K, seja um indício de que uma via possa ser ativada pela PI3-K e estar envolvida na neuroproteção. Os dados suportam a idéia que a OXC poderia ser utilizada na profilaxia e/ou tratamento da isquemia cerebral.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alzheimer’s Disease (AD) is a neurodegenerative disorder neuropathologically characterized by the presence of extracellular senile plaques, intracellular neurofibrillary tangles and synaptic loss. Neuroinflammation has been associated with some neurodegenerative diseases, such as AD. In AD, increased Aβ production and aggregation, have a fundamental role in the activation of the inflammatory process. In turn, this could be fundamental in the early stages of this pathology, regarding the Aβ clearance and brain protection. However, chronic inflammation leads to an increase of the inflammatory mediators, such as cytokines, released by activated microglia, astrocytes, and neurons. The excessive production of these inflammatory components promotes alterations in both amyloid precursor protein (APP) expression and processing, stimulating the increase of Aβ accumulation and abnormal tau phosphorylation. This results in neurotoxic effects, irreversible damage and neuronal loss. Chronic inflammation is a feature of AD however, little is known about the effects of some chemokines on its pathogenesis. Thus, the main aim of this thesis was to study the impact of the interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) on apoptosis, APP and tau. The both studied chemokines resulted in small alterations regarding the cytotoxicity on SH-SY5Y differentiated cells, being a significant increase in apoptosis observed only for the MCP-1 at the highest concentration. For the APP processing no significant differences were obtained, although a tendency to increase at different concentrations and periods was registered for both IL-8 and MCP-1. With respect to tau and other cytoskeleton-associated proteins, it was possible to observe a tendency to increase in the phosphorylated residue (Ser396) at the higher concentrations, as well as alterations on actin and tubulin with an increase on acetylated-α tubulin. This effect can be translated by neuronal architectural and survival alterations. Therefore additional studies could contribute to a better understanding of the way that these chemokines act on AD pathogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A regulação fina do volume e osmolaridade dos líquidos corporais é fundamental para a sobrevivência. Qualquer variação na composição do meio interno ativa mecanismos comportamentais, neurais e hormonais compensatórios que controlam a ingestão e excreção de água e eletrólitos a fim de manter a homeostase hidroeletrolítica. Alterações na faixa de 1-2% na osmolaridade sanguínea estimulam a liberação de arginina vasopressina (AVP) que resulta em antidiurese além de ocitocina (OT) e peptídeo natriurético atrial (ANP) que promovem a natriurese. Trabalhos realizados em nosso laboratório utilizando o modelo experimental de expansão do volume extracelular (EVEC) mostraram ativação de neurônios magnocelulares ocitocinérgicos localizados no núcleo paraventricular (PVN) e núcleo supra-óptico (SON) responsáveis pela secreção de OT e AVP, igualmente alteradas em resposta a este estímulo. A participação do sistema nervoso simpático nestas condições tem sido levantada. Projeções medulares e tronco-encefálicas (simpáticas) para o hipotálamo poderiam atuar de forma seletiva inibindo sinalizações para a ingestão e estimulando sinalizações para excreção de água e eletrólitos. O papel de vias noradrenérgicas tronco-encefálicas nesta regulação ainda precisa ser mais bem estabelecido. Assim sendo, objetivamos neste estudo esclarecer o papel do sistema nervoso simpático (via noradrenérgicas) na regulação das alterações induzidas pelo modelo de EVEC, analisando por cromatografia líquida de alta eficácia o conteúdo de noradrenalina (NA), adrenalina (AD) e serotonina (5-HT) em estruturas do tronco cerebral como núcleo do trato solitário (NTS), bulbo rostro-ventro lateral (RVLM), locus coeruleus (LC) e núcleo dorsal da rafe (NDR) e estruturas hipotalâmicas como SON e PVN. Procuramos ainda, através de estudos imunocitoquímicos determinar alterações no padrão de ativação neuronal pela análise de Fos-TH ou Fos-5HT nas estruturas acima mencionadas em condições experimentais nas quais são induzidas alterações do volume do líquido extracelular.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alcohol use disorders (AUDs) are complex and developing effective treatments will require the combination of novel medications and cognitive behavioral therapy approaches. Epidemiological studies have shown there is a high correlation between alcohol consumption and tobacco use, and the prevalence of smoking in alcoholics is as high as 80% compared to about 30% for the general population. Both preclinical and clinical data provide evidence that nicotine administration increases alcohol intake and nonspecific nicotinic receptor antagonists reduce alcohol-mediated behaviors. As nicotine interacts specifically with the neuronal nicotinic acetylcholine receptor (nAChR) system, this suggests that nAChRs play an important role in the behavioral effects of alcohol. In this review, we discuss the importance of nAChRs for the treatment of AUDs and argue that the use of FDA approved nAChR ligands, such as varenicline and mecamylamine, approved as smoking cessation aids may prove to be valuable treatments for AUDs. We also address the importance of combining effective medications with behavioral therapy for the treatment of alcohol dependent individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alcohol use disorders (AUDs) impact millions of individuals and there remain few effective treatment strategies. Despite evidence that neuronal nicotinic acetylcholine receptors (nAChRs) have a role in AUDs, it has not been established which subtypes of the nAChR are involved. Recent human genetic association studies have implicated the gene cluster CHRNA3-CHRNA5-CHRNB4 encoding the α3, α5, and β4 subunits of the nAChR in susceptibility to develop nicotine and alcohol dependence; however, their role in ethanol-mediated behaviors is unknown due to the lack of suitable and selective research tools. To determine the role of the α3, and β4 subunits of the nAChR in ethanol self-administration, we developed and characterized high-affinity partial agonists at α3β4 nAChRs, CP-601932, and PF-4575180. Both CP-601932 and PF-4575180 selectively decrease ethanol but not sucrose consumption and operant self-administration following long-term exposure. We show that the functional potencies of CP-601932 and PF-4575180 at α3β4 nAChRs correlate with their unbound rat brain concentrations, suggesting that the effects on ethanol self-administration are mediated via interaction with α3β4 nAChRs. Also varenicline, an approved smoking cessation aid previously shown to decrease ethanol consumption and seeking in rats and mice, reduces ethanol intake at unbound brain concentrations that allow functional interactions with α3β4 nAChRs. Furthermore, the selective α4β2(*) nAChR antagonist, DHβE, did not reduce ethanol intake. Together, these data provide further support for the human genetic association studies, implicating CHRNA3 and CHRNB4 genes in ethanol-mediated behaviors. CP-601932 has been shown to be safe in humans and may represent a potential novel treatment for AUDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Addictive drugs can activate systems involved in normal reward-related learning, creating long-lasting memories of the drug's reinforcing effects and the environmental cues surrounding the experience. These memories significantly contribute to the maintenance of compulsive drug use as well as cue-induced relapse which can occur even after long periods of abstinence. Synaptic plasticity is thought to be a prominent molecular mechanism underlying drug-induced learning and memories. Ethanol and nicotine are both widely abused drugs that share a common molecular target in the brain, the neuronal nicotinic acetylcholine receptors (nAChRs). The nAChRs are ligand-gated ion channels that are vastly distributed throughout the brain and play a key role in synaptic neurotransmission. In this review, we will delineate the role of nAChRs in the development of ethanol and nicotine addiction. We will characterize both ethanol and nicotine's effects on nAChR-mediated synaptic transmission and plasticity in several key brain areas that are important for addiction. Finally, we will discuss some of the behavioral outcomes of drug-induced synaptic plasticity in animal models. An understanding of the molecular and cellular changes that occur following administration of ethanol and nicotine will lead to better therapeutic strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alcohol use disorders (AUDs) are a major public health problem, and the few treatment options available to those seeking treatment offer only modest success rates. There remains a need to identify novel targets for the treatment of AUDs. The neuronal nicotinic acetylcholine receptors (nAChRs) represent a potential therapeutic target in the brain, as recent human genetic studies have implicated gene variants in the α5 nAChR subunit as high risk factors for developing alcohol dependence. Here, we evaluate the role of 5* nAChR for ethanol-mediated behaviors using α5+/+ and α5-/- mice. We characterized the effect of hypnotic doses of ethanol and investigated drinking behavior using an adapted Drinking-in-the Dark (DID) paradigm that has been shown to induce high ethanol consumption in mice. We found the α5 subunit to be critical in mediating the sedative effects of ethanol. The α5-/- mice showed slower recovery from ethanol-induced sleep, as measured by loss of righting reflex. Additionally the α5-/- mice showed enhanced impairment to ethanol-induced ataxia. We found the initial sensitivity to ethanol and ethanol metabolism to be similar in both α5+/+ and α5-/- mice. Hence the enhanced sedation is likely due to a difference in the acute tolerance of ethanol in mice deficient of the α5 subunit. However the α5 subunit did not play a role in ethanol consumption for ethanol concentrations ranging from 5% to 30% in the DID paradigm. Additionally, varenicline (Chantix®) was effective in reducing ethanol intake in α5-/- mice. Together, our data suggest that the α5 nAChR subunit is important for the sedative hypnotic doses of ethanol but does not play a role in ethanol consumption. Varenicline can be a treatment option even when there is loss of function of the α5 nAChR subunit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple Sclerosis (MS) is a chronic neurological disease characterized by demyelination associated with infiltrating white blood cells in the central nervous system (CNS). Nitric oxide synthases (NOS) are a family of enzymes that control the production of nitric oxide. It is possible that neuronal NOS could be involved in MS pathophysiology and hence the nNOS gene is a potential candidate for involvement in disease susceptibility. The aim of this study was to determine whether allelic variation at the nNOS gene locus is associated with MS in an Australian cohort. DNA samples obtained from a Caucasian Australian population affected with MS and an unaffected control population, matched for gender, age and ethnicity, were genotyped for a microsatellite polymorphism in the promoter region of the nNOS gene. Allele frequencies were compared using chi-squared based statistical analyses with significance tested by Monte Carlo simulation. Allelic analysis of MS cases and controls produced a chi-squared value of 5.63 with simulated P = 0.96 (OR(max) = 1.41, 95% CI: 0.926-2.15). Similarly, a Mann-Whitney U analysis gave a non-significant P-value of 0.377 for allele distribution. No differences in allele frequencies were observed for gender or clinical course subtype (P > 0.05). Statistical analysis indicated that there is no association of this nNOS variant and MS and hence the gene does not appear to play a genetically significant role in disease susceptibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structurally novel compounds able to block voltage-gated Ca2+ channels (VGCCs) are currently being sought for the development of new drugs directed at neurological disorders. Fluorescence techniques have recently been developed to facilitate the analysis of VGCC blockers in a multi-well format. By utilising the small cell lung carcinoma cell line, NCI-H146, we were able to detect changes in intracellular Ca2+ concentration ([Ca2+]i) using a fluorescence microplate reader. NCI-H146 cells have characteristics resembling those of neuronal cells and express multiple VGCC subtypes, including those of the L-, N- and P-type. We found that K+-depolarisation of fluo-3 loaded NCI-H146 cells causes a rapid and transient increase in fluorescence, which was readily detected in a 96-well plate. Extracts of Australian plants, including those used traditionally as headache or pain treatments, were tested in this study to identify those affecting Ca2+ influx following membrane depolarisation of NCI-H146 cells. We found that E. bignoniiflora, A. symphyocarpa and E. vespertilio caused dose-dependent inhibition of K+-depolarised Ca2+ influx, with IC50 values calculated to be 234, 548 and 209 μg/ml, respectively. This data suggests an effect of these extracts on the function of VGCCs in these cells. Furthermore, we found similar effects using a fluorescence laser imaging plate reader (FLIPR) that allows simultaneous measurement of real-time fluorescence in a multi-well plate. Our results indicate that the dichloromethane extract of E. bignoniiflora and the methanolic extract of E. vespertilio show considerable promise as antagonists of neuronal VGCCs. Further analysis is required to characterise the function of the bioactive constituents in these extracts and determine their selectivity on VGCC subtypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ubiquitous chemical messenger molecule nitric oxide (NO) has been implicated in a diverse range of biological activities including neurotransmission, smooth muscle motility and mediation of nociception. Endogenous synthesis of NO by the neuronal isoform of the nitric oxide synthase gene family has an essential role within the central and peripheral nervous systems in addition to the autonomic innervation of cerebral blood vessels. To investigate the potential role of NO and more specifically the neuronal nitric oxide synthase (nNOS) gene in migraine susceptibility, we investigated two microsatellite repeat variants residing within the 5′ and 3′ regions of the nNOS gene. Population genomic evaluation of the two nNOS repeat variants indicated significant linkage disequilibrium between the two loci. Z-DNA conformational sequence structures within the 5′ region of the nNOS gene have the potential to enhance or repress gene promoter activity. We suggest that genetic analysis of this 5′ repeat variant is the more functional variant expressing gene wide information that could affect endogenous NO synthesis and potentially result in diseased states. However, no association with migraine (with or without aura) was seen in our extensive case-control cohort (n = 579 affected with matched controls), when both the 5′ and 3′ genetic variants were investigated.