951 resultados para STARTER CULTURES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Icewine is a sweet dessert wine fermented from the juice of grapes naturally frozen on the vine. The production of Icewine faces many challenges such as sluggish fermentation, which often yields wines with low ethanol, and an accumulation of high concentration of volatile acidity, mainly in the form of acetic acid. This project investigated three new yeast strains as novel starter cultures for Icewine fermentation with particular emphasis on reducing acetic acid production: a naturally occurring strain of S. bayanus/S. pastorianus isolated from Icewine grapes, and two hybrids between S. cerevisiae and S. bayanus, AWRI 1571 and AWRI 1572. These strains were evaluated for sugar consumption patterns and metabolic production of ethanol, glycerol and acetic acid, and were compared to the performance of a standard commercial wine yeast KI-VI116. The ITS rONA region of the two A WRI crosses was also analyzed during fermentations to assess their genomic stability. Icewine fermentations were performed in sterile filtered juice, in the absence of indigenous microflora, and also in unfiltered juice in order to mirror commercial wine making practices. The hybrid A WRI 1572 was found to be a promising candidate as a novel starter culture for Icewine production. I t produced 10.3 % v/v of ethanol in sterile Riesling Icewine fermentations and 11.2 % v/v in the unfiltered ones within a reasonable fermentation time (39 days). Its acetic acid production per gram sugar consumed was approximately 30% lower in comparison with commercial wine yeast K I -V 1116 under both sterile filtered and unfiltered fermentations. The natural isolate S. bayanus/S. pastorianus and AWRI 1571 did not appear to be suitable for commercial Icewine production. They reached the target ethanol concentration of approximately 10 % v/v in 39 day fermentations and also produced less acetic acid as a function of both time and sugar consumed in sterile fermentations compared to KI-V1116. However, in unfiltered fermentations, both of them failed to produce the target concentration of ethanol and accumulated high concentration of acetic acid. Both A WRI crosses displayed higher loss of or reduced copies in ITS rDNA region from the S. bayanus parent compared to the S. cerevisiae parent; however, these genomic losses could not be related to the metabolic profile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of milk processing on rheological and textural properties of probiotic low-fat yogurt (fermented by two different starter cultures) was studied. Skim milk fortified with skim milk powder was subjected to three treatments: (1) thermal treatment at 85C for 30 min; (2) high hydrostatic pressure (HHP) at 676 MPa for 5 min; and (3) combined treatments of HHP (676 MPa for 5 min) and heat (85C for 30 min). The processed milk was fermented using two different starter cultures containing Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus and Bifidobacterium longum at inoculation rates of 0.1 and 0.2%. Rheological parameters were determined and a texture profile analysis was carried out. Yogurts presented different rheological behaviors according to the treatment used, which could be attributed to structural phenomena. The combined HHP and heat treatment of milks resulted in yogurt gels with higher consistency index values than gels obtained from thermally treated milk. The type of starter culture and inoculation rate, providing different fermentation pathways, also affected the consistency index and textural properties significantly. The combined HHP and heat treatment of milks before fermentation, and an inoculation rate of 0.1% (for both cultures), led to desirable rheological and textural properties in yogurt, which presented a creamy and thick consistency that does not require the addition of stabilizers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to assess selective plating methodologies for the enumeration and identification of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, Lactobacillus rhamnosus and Bifidobacterium animalis ssp. lactis in fermented milks. Seven agar media (MRS with added sorbitol, clindamycin or vancomycin, acidified MRS, RCA with added aniline blue and dicloxacilin, M17 and ST) were evaluated. The results showed that RCA dicloxacilin agar was suitable for the selective enumeration of B. animalis ssp. lactis in fermented milk. Either MRS (acidified) or M17 agar could be used for enumeration of L. delbrueckii ssp. bulgaricus and S. thermophilus, respectively. MRS media containing antibiotics were effective for the enumeration of the probiotic organisms (L. rhamnosus and L. acidophilus) inoculated in fermented milks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A survey of starter and probiotic cultures was carried out to determine the current antibiotic resistance situation in microbial food additives in Switzerland. Two hundred isolates from 90 different sources were typed by molecular and other methods to belong to the genera Lactobacillus (74 samples), Staphylococcus (33 samples), Bifidobacterium (6 samples), Pediococcus (5 samples), or were categorized as lactococci or streptococci (82 samples). They were screened for phenotypic resistances to 20 antibiotics by the disk diffusion method. Twenty-seven isolates exhibiting resistances that are not an intrinsic feature of the respective genera were further analyzed by microarray hybridization as a tool to trace back phenotypic resistances to specific genetic determinants. Their presence was finally verified by PCR amplification or Southern hybridization. These studies resulted in the detection of the tetracycline resistance gene tet(K) in 5 Staphylococcus isolates used as meat starter cultures, the tetracycline resistance gene tet(W) in the probiotic cultures Bifidobacterium lactis DSM 10140 and Lactobacillus reuteri SD 2112 (residing on a plasmid), and the lincosamide resistance gene lnu(A) (formerly linA) in L. reuteri SD 2112.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Mediterranean countries, such as Portugal, traditional dry-fermented sausages are highly appreciated. They are often still being manufactured in small processing units, according to traditional procedures. The aims of the present study were to evaluate the effect of different starter cultures and their optimal concentration, to reduce the microbial load in end-products, with the purpose to improve the sausages’ safety, without deteriorating sensory acceptability. pH, aw, colour, texture and microbiological profile were assessed. On the other hand, a sensory panel evaluated the products. Based on the first results, S. xylosus and L. sakei were chosen to be inoculated together with a yeast strain. In the mixed starter culture experiment, a food safety issue arose probably related to the higher aw value (0.91). The presence of Salmonella spp. detected in a few end-products sausages did not allow a full sensory evaluation in the mixed starter culture experiment. However, in the two preliminary experiments, the use of starter cultures did not depreciate the panellists’ overall appreciation and products acceptability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Processed meat products are of worldwide importance and, because of their intrinsic factors as well as the processing methods, they are highly prone to fungal and mycotoxin contamination. Ochratoxin A (OTA) is the most significant mycotoxin in processed meat products. Penicillium nordicum is considered to be responsible for OTA contamination of meat products, as it is highly adapted to salt and protein-rich matrices and is moderately psycrotrophic. However, another OTA-producing fungus, Aspergillus westerdijkiae, adapted to carbon-rich matrices such as cereals and coffee beans, has been recently associated with high levels of OTA in meat products. Several Lactic Acid Bacteria (LAB) and yeasts have been tested as biocontrol agents against P. nordicum growth and OTA production in meat products, with promising results, but none of the studies have considered A. westerdijkiae. The aim of this work was to evaluate in vitro the effect of a commercial starter culture used in sausage fermentation and four yeasts isolated from dry-cured sausage on these two OTA-producing fungi, both in terms of fungal growth and of OTA production, using different meat-based culture media as model systems. The mechanisms underlying the observed effect were also studied. For this purpose, C. krusei, C. zeylanoides, R. mucilaginosa, R. glutinis, a mix of these yeasts and the starter culture were co-inoculated with P. nordicum and A. westerdijkiae in industrial sausage, traditional sausage, and ham-based media, under conditions of water activity, salt concentration and temperature that mimic real conditions at beginning and end of sausage curing process. Fungal growth was determined by measuring colony diameter, and OTA production was quantified by HPLC-FLD after extraction with methanol. Yeasts where found to inhibit significantly the growth of both fungi. P. nordicum was unable to produce detectable OTA in both sausage-based media under any condition. In ham, yeasts reduced OTA production, while the starter culture significantly increased it. Unexpectedly, OTA production by A. westerdijkiae was significantly stimulated in all media tested by all microorganisms. Matrix has a significant effect on OTA production by P. nordicum, but not by A. westerdijkiae, for which only temperature showed to have effect. By testing the mechanisms of action by which starter culture and C. zeylanoides influenced fungal responses, we were able to determine that direct contact and simultaneous growth of test organisms were the mechanisms more significantly involved in the responses. In conclusion, ochratoxigenic fungi do not all respond to antagonistic microorganisms in the same way. The use of biocontrol agents with the intent of reducing fungal growth and mycotoxin production by one fungus can have unexpected effects on others, thus leading to unforeseen safety problems. Further experiments are recommended to properly understand the reasons behind the different effects of microorganisms, to ensure their safe as biocontrol agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional dry-cured sausages are highly appreciated in Mediterranean countries. The aim of the present study was to evaluate the effect of different starter cultures in the sausages Alentejano pig meat was used to prepare drycured sausages in a local factory. Staphylococcus xylosus, Lactobacillus sakei and a yeast strain were inoculated at a concentration of 106 cfu/g meat batter both in separate and in mixed culture. Three independent batches with two replicates per treatment were produced. Samples were collected throughout the ripening process. pH and aw were determined according to the ISO standards. Microbiological counts of total mesophiles, total psycrotrophs, anaerobes, coagulase-negative staphylococci (CNS), lactic acid bacteria (LAB), enterobacteria, yeasts and moulds and Listeria monocytogenes were done according to the respective ISO standards, as well as detection of Salmonella spp. Biogenic amines quantification was performed by HPLC as described by Roseiro et al. (1). The treatment with L. sakei alone was the most effective in reducing the contamination level both with Salmonella spp. and L. monocytogenes, however this effect seems to be lost in the mixed cultures. The presence of the yeast strain seems to increase the levels of phenylethylamine and histamine. The contents in cadaverine, putrescine and tyramine were generally lower in the inoculated sausages. Regarding tyramine, the treatments with L. sakei showed significantly lower values. No significant differences between treatments were observed for both spermine and spermidine.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Due to the fact that probiotic cells need to be alive when they are consumed, culture-based analysis (plate count) is critical in ascertaining the quality (numbers of viable cells) of probiotic products. Since probiotic cells are typically stressed, due to various factors related to their production, processing and formulation, the standard methodology for total plate counts tends to underestimate the cell numbers of these products. Furthermore, products such as microencapsulated cultures require modifications in the release and sampling procedure in order to correctly estimate viable counts. This review examines the enumeration of probiotic bacteria in the following commercial products: powders, microencapsulated cultures, frozen concentrates, capsules, foods and beverages. The parameters which are specifically examined include: sample preparation (rehydration, thawing), dilutions (homogenization, media) and plating (media, incubation) procedures. Recommendations are provided for each of these analytical steps to improve the accuracy of the analysis. Although the recommendations specifically target the analysis of probiotics, many will apply to the analysis of commercial lactic starter cultures used in food fermentations as well.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The technology of modern fermented milk production is not complicated and relies largely on the characteristics of the microorganisms used in its manufacture. Biochemical substances excreted by the starter cultures contribute to the chemical, physical and organoleptic properties of cultured milks. Chemical and organoleptic properties of yoghurt starter cultures have been widely studied over several decades. Conversely the biosynthetic processes and genetic control of the production of viscous extracellular material (slime) by selected thermophillic streptococci is still insufficiently understood. This study attempted to elucidate physiological aspects and the genetic control of slime production. An attempt to chemically induce ropiness was also preformed. Twenty strains of Gram positive, thermo-tolerant, milk dotting, catalase negative cocci were collected from a variety of sources. All strains were identified as Streptococcus thermophilus. Four of the isolates were identified as capable of producing an extracellular, ‘ropy’ capsular material. A negative staining method for highlighting capsular material under light microscopy was described. Ropy isolates displayed thick capsular zones of between 6-8 μm. The isolates graded as non-ropy produced only small capsular zones (less than 2 μm); two variants displayed no capsular material. Instability of the ropy phenotype during subculture and prolonged storage was described for all four ropy isolates at varied temperatures. Instability during transfer was reported as moderate with a loss of no more than 45% of ropy colonies after 15 subcultures at 48°C A significant increase in instability, during transfer, associated with an increase in incubation temperature (37-48°C) was also reported. Prolonged storage of ropy variants over ten days resulted in a drop in the number of ropy colonies. The loss was minimal when cultures were stored at 8°C, but excessive (approaching 100%) at 37°C This suggested the presence of capsular degradative substances. Analysis of the plasmid profiles of 20 strains identified only two strains harboured plasmid DNA. All plasmids were small, less than 23kilobases, and each strain possessed a single plasmid species. Only one ropy strain contained plasmid DNA that was shown, with the aid of curing experiments, not to be linked to production of the ropy phenotype. The amino acid analogue p-fluoro-DL-phenylalanine was unsuccessful in generating ropy colonies from non-ropy variants of Streptococcus thermophilus at low concentrations. Some technological considerations for the use of ropy variants of Streptococcus thermophilus in yoghurt starter cultures were made.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

References: p. 66

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increased consumption of low-fat milk products is inversely associated with the risk of hypertension. The beneficial effect of milk on blood pressure is attributed to high calcium and potassium content but also to specific peptide sequences, which are cleaved from milk protein during gastrointestinal digestion, fermentation of milk with proteolytic starter cultures or enzymatic hydrolysis. Milk products fermented with Lactobacillus helveticus contain casein-derived tripeptides isoleucine-proline-proline (Ile-Pro-Pro) and valine-proline-proline (Val-Pro-Pro), which have been shown to possess antihypertensive effects in humans and in experimental animals. The aim of the present series of studies was to investigate the effects of tripeptides Ile-Pro-Pro and Val-Pro-Pro or fermented milk products containing them on vascular function and blood pressure and to elucidate the mechanisms behind them by using different experimental models of hypertension. Another aim was to characterize the acute effects of tripeptides on blood pressure and arterial stiffness in mildly hypertensive humans. Ile-Pro-Pro and Val-Pro-Pro or fermented milk products containing them attenuated the development of hypertension in two experimental models of hypertension, spontaneously hypertensive rat (SHR) and type 2 diabetic Goto-Kakizaki (GK) rat fed with high-salt diet. Significant differences in systolic blood pressure (SBP) were seen after 8 weeks treatment with tripeptide-containing products compared to control product. Plant sterols did not enhance this effect. Two differently produced tripeptide powders produced a similar attenuating effect on SBP in SHR. In mildly hypertensive subjects, a single administration of tripeptide- and plant sterol-containing fermented milk product decreased both SBP and diastolic blood pressure (DBP) over a period of 8 hours. Protective effect of tripeptides Ile-Pro-Pro and Val-Pro-Pro and fermented milk products containing them on vascular function was demonstrated in in vitro studies and long-term experimental studies. The effect was shown to be endothelium-dependent and possibly involving endothelium-derived hyperpolarizing factor (EDHF). In the clinical study, single administration of tripeptide-containing fermented milk product did not affect measures of arterial stiffness. Long-term treatment with fermented milk product containing Ile-Pro-Pro and Val-Pro-Pro inhibited angiotensin-converting enzyme (ACE) and decreased aldosterone levels thus showing beneficial effects on the renin-angiotensin system (RAS) in SHR and GK. No changes in the components of RAS were observed by the single administration of the same product in mildly hypertensive subjects. Increased levels of cGMP, NOx and citrulline suggest increased nitric oxide (NO) production by the tripeptides. Taken together, Ile-Pro-Pro and Val-Pro-Pro -containing products attenuate the development of hypertension after long-term treatment in experimental models of hypertension and possess an acute antihypertensive effect in mildly hypertensive subjects. In addition, these tripeptides show endothelium-mediated beneficial effects on vascular function. Attenuation of blood pressure increase by the tripeptides in experimental animals involves RAS, but its role in the antihypertensive effect in humans remains to be elucidated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microorganisms exist predominantly as sessile multispecies communities in natural habitats. Most bacterial species can form these matrix-enclosed microbial communities called biofilms. Biofilms occur in a wide range of environments, on every surface with sufficient moisture and nutrients, also on surfaces in industrial settings and engineered water systems. This unwanted biofilm formation on equipment surfaces is called biofouling. Biofouling can significantly decrease equipment performance and lifetime and cause contamination and impaired quality of the industrial product. In this thesis we studied bacterial adherence to abiotic surfaces by using coupons of stainless steel coated or not coated with fluoropolymer or diamond like carbon (DLC). As model organisms we used bacterial isolates from paper machines (Meiothermus silvanus, Pseudoxanthomonas taiwanensis and Deinococcus geothermalis) and also well characterised species isolated from medical implants (Staphylococcus epidermidis). We found that coating of steel surface with these materials reduced its tendency towards biofouling: Fluoropolymer and DLC coatings repelled all four biofilm formers on steel. We found great differences between bacterial species in their preference of surfaces to adhere as well as their ultrastructural details, like number and thickness of adhesion organelles they expressed. These details responded differently towards the different surfaces they adhered to. We further found that biofilms of D. geothermalis formed on titanium dioxide coated coupons of glass, steel and titanium, were effectively removed by photocatalytic action in response to irradiation at 360 nm. However, on non-coated glass or steel surfaces irradiation had no detectable effect on the amount of bacterial biomass. We showed that the adhesion organelles of bacteria on illuminated TiO2 coated coupons were complety destroyed whereas on non-coated coupons they looked intact when observed by microscope. Stainless steel is the most widely used material for industrial process equipments and surfaces. The results in this thesis showed that stainless steel is prone to biofouling by phylogenetically distant bacterial species and that coating of the steel may offer a tool for reduced biofouling of industrial equipment. Photocatalysis, on the other hand, is a potential technique for biofilm removal from surfaces in locations where high level of hygiene is required. Our study of natural biofilms on barley kernel surfaces showed that also there the microbes possessed adhesion organelles visible with electronmicroscope both before and after steeping. The microbial community of dry barley kernels turned into a dense biofilm covered with slimy extracellular polymeric substance (EPS) in the kernels after steeping in water. Steeping is the first step in malting. We also presented evidence showing that certain strains of Lactobacillus plantarum and Wickerhamomyces anomalus, when used as starter cultures in the steeping water, could enter the barley kernel and colonise the tissues of the barley kernel. By use of a starter culture it was possible to reduce the extensive production of EPS, which resulted in a faster filtration of the mash.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Listeria monocytogenes is the causative agent of the severe foodborne infection listeriosis. The number of listeriosis cases in recent years has increased in many European countries, including Finland. Contamination of the pathogen needs to be minimized and growth to high numbers in foods prevented in order to reduce the incidence of human cases. The aim of this study was to evaluate contamination routes of L. monocytogenes in the food chain and to investigate methods for control of the pathogen in food processing. L. monocytogenes was commonly found in wild birds, the pig production chain and in pork production plants. It was found most frequently in birds feeding at landfill site, organic farms, tonsil samples, and sites associated with brining. L. monococytogenes in birds, farms, food processing plant or foods did not form distinct genetic groups, but populations overlapped. The majority of genotypes recovered from birds were also detected in foods, food processing environments and other animal species and birds may disseminate L. monocytogenes into food chain. Similar genotypes were found in different pigs on the same farm, as well as in pigs on farms and later in the slaughterhouse. L. monocytogenes contamination spreads at farm level and may be a contamination source into slaughterhouses and further into meat. Incoming raw pork in the processing plant was frequently contaminated with L. monocytogenes and genotypes in raw meat were also found in processing environment and in RTE products. Thus, raw material seems to be a considerable source of contamination into processing facilities. In the pork processing plant, the prevalence of L. monocytogenes increased in the brining area, showing that the brining was an important contamination site. Recovery of the inoculated L. monocytogenes strains showed that there were strain-specific differences in the ability to survive in lettuce and dry sausage. The ability of some L. monocytogenes strains to survive well in food production raises a challenge for industry, because these strains can be especially difficult to remove from the products and raises a need to use an appropriate hurdle concept to control most resistant strains. Control of L. monocytogenes can be implemented throughout the food chain. Farm-specific factors affected the prevalence of L. monocytogenes and good farm-level practices can therefore be utilized to reduce the prevalence of this pathogen on the farm and possibly further in the food chain. Well separated areas in a pork production plant had low prevalences of L. monocytogenes, thus showing that compartmentalization controls the pathogen in the processing line. The food processing plant, especially the brining area, should be subjected to disassembling, extensive cleaning and disinfection to eliminate persistent contamination by L. monocytogenes, and replacing brining with dry-salting should be considered. All of the evaluated washing solutions decreased the populations of L. monocytogenes on precut lettuce, but did not eliminate the pathogen. Thus, the safety of fresh-cut produce cannot rely on washing with disinfectants, and high-quality raw material and good manufacturing practices remain important. L. monocytogenes was detected in higher levels in sausages without the protective culture than in sausages with this protective strain, although numbers of L. monocytogenes by the end of the ripening decreased to the level of < 100 MPN/g in all sausages. Protective starter cultures provide an appealing hurdle in dry sausage processing and assist in the control of L. monocytogenes.