986 resultados para RNA viruses


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This review focuses on the monophyletic group of animal RNA viruses united in the order Nidovirales. The order includes the distantly related coronaviruses, toroviruses, and roniviruses, which possess the largest known RNA genomes (from 26 to 32 kb) and will therefore be called ‘large’ nidoviruses in this review. They are compared with their arterivirus cousins, which also belong to the Nidovirales despite having a much smaller genome (13–16 kb). Common and unique features that have been identified for either large or all nidoviruses are outlined. These include the nidovirus genetic plan and genome diversity, the composition of the replicase machinery and virus particles, virus-specific accessory genes, the mechanisms of RNA and protein synthesis, and the origin and evolution of nidoviruses with small and large genomes. Nidoviruses employ single-stranded, polycistronic RNA genomes of positive polarity that direct the synthesis of the subunits of the replicative complex, including the RNA-dependent RNA polymerase and helicase. Replicase gene expression is under the principal control of a ribosomal frameshifting signal and a chymotrypsin-like protease, which is assisted by one or more papain-like proteases. A nested set of subgenomic RNAs is synthesized to express the 3'-proximal ORFs that encode most conserved structural proteins and, in some large nidoviruses, also diverse accessory proteins that may promote virus adaptation to specific hosts. The replicase machinery includes a set of RNA-processing enzymes some of which are unique for either all or large nidoviruses. The acquisition of these enzymes may have improved the low fidelity of RNA replication to allow genome expansion and give rise to the ancestors of small and, subsequently, large nidoviruses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Reverse genetics has facilitated the use of non-segmented negative strand RNA viruses (NNSV) as vectors. Currently, heterologous gene expression necessitates insertion of extra-numeral transcription units (ENTUs), which may alter the NNSV polar transcription gradient and attenuate growth relative to wildtype (Wt). We hypothesized that rescuing recombinant Sendai Virus (rSeV) with a bicistronic gene might circumvent this attenuation but still allow heterologous open reading frame (ORF) expression. Therefore, we used a 9-nucleotide sequence previously described with internal ribosome entry site (IRES) activity, which, when constructed as several repeats, synergistically increased the level of expression of the second cistron [Chappell, S.A., Edelman, G.M., Mauro, V.P., 2000. A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity. Proc. Natl. Acad. Sci. U.S.A. 97, 1536-1541]. We inserted the Renilla luciferase (rLuc) ORF, preceded by 1, 3 or 7 IRES copies, downstream of the SeV N ORF in an infectious clone. Corresponding rSeVs were successfully rescued. Interestingly, bicistronic rSeVs grew as fast as or faster than Wt rSeV. Furthermore, SeV gene transcription downstream of the N/rLuc gene was either equivalent to, or slightly enhanced, compared to Wt rSeV. Importantly, all rSeV/rLuc viruses efficiently expressed rLuc. IRES repetition increased rLuc expression at a multiplicity of infection of 0.1, although without evidence of synergistic enhancement. In conclusion, our approach provides a novel way of insertion and expression of foreign genes in NNSVs. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dengue and Chikungunya viruses cause the most important arthropod-borne viral infections for humans. These viruses are predominant in tropical and subtropical regions. In addition, these viruses are predominant in tropical and subtropical regions. Dengue mortality rate is around 1.2 to 3.5% and deaths due to chikungunya fever are around 1 in 1000; however, half of chikungunya-infected patients evolve into a chronic state that can persist for months up to years. There are no antiviral drugs available for DENV and CHIKV treatment and prevention. Moreover, vector control strategies have failed so far. Thus, the development of potent inhibitors for a broad spectrum of RNA viruses is urgently needed. We established and characterized a new embryonic insect cell line from Culex quinquefasciatus mosquito. Also we established the flaviviruses and alphavirus replication, both in C6/36 and Lulo insect cell lines, as well as in Vero cell line. In addition we carried out a reference compound library and reference panel of assays and data for DENV, which provides a benchmark for further studies. During this study, a panel of 9 antiviral molecules, with proven in vitro anti-dengue virus activity and that act at different stages of the DENV life cycle, was selected. Finally, Favipiravir or T-705, was identified as inhibitor in vitro and in vivo of alphaviruses and the mutation K291R in nsP4, which is responsible of the polymerase activity, was found as the mode of action in CHIKV. Interestingly, lysine in motif F1 is also highly conserved in positive-stranded RNA viruses and this might explain the broad spectrum of T-705 antiviral activity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chronic tonsillar diseases are an important health problem, leading to large numbers of surgical procedures worldwide. Little is known about pathogenesis of these diseases. In order to investigate the role of respiratory viruses in chronic adenotonsillar diseases, we developed a cross-sectional study to determine the rates of viral detections of common respiratory viruses detected by TaqMan real time PCR (qPCR) in nasopharyngeal secretions, tonsillar tissues and peripheral blood from 121 children with chronic tonsillar diseases, without symptoms of acute respiratory infections. At least one respiratory virus was detected in 97.5% of patients. The viral co-infection rate was 69.5%. The most frequently detected viruses were human adenovirus in 47.1%, human enterovirus in 40.5%, human rhinovirus in 38%, human bocavirus in 29.8%, human metapneumovirus in 17.4% and human respiratory syncytial virus in 15.7%. Results of qPCR varied widely between sample sites: human adenovirus, human bocavirus and human enterovirus were predominantly detected in tissues, while human rhinovirus was more frequently detected in secretions. Rates of virus detection were remarkably high in tonsil tissues: over 85% in adenoids and close to 70% in palatine tonsils. In addition, overall virus detection rates were higher in more hypertrophic than in smaller adenoids (p = 0.05), and in the particular case of human enteroviruses, they were detected more frequently (p = 0.05) in larger palatine tonsils than in smaller ones. While persistence/latency of DNA viruses in tonsillar tissues has been documented, such is not the case of RNA viruses. Respiratory viruses are highly prevalent in adenoids and palatine tonsils of patients with chronic tonsillar diseases, and persistence of these viruses in tonsils may stimulate chronic inflammation and play a role in the pathogenesis of these diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Expression of antibodies in plant against essential viral proteins could provide an alternative approach to engineered viral resistance. Engineered single chain Fv antibodies scFV are particularly suitable for expression in plant because of their small size and the lack of assembly requirements. RNA-dependent RNA polymerases (RdRps) function as the catalytic subunit of viral replicases required for the replication of all positive strand RNA viruses. By using Phage technology we selected scFvs from a phage library using purified E.coli expressed TBSV(Tomato bushy stunt virus) replicase as antigen. The scFvs mediated-inhibition of RdRp activity was studied in vitro and in planta. In vitro experiments showed the inhibition of CNV(Cucumber necrosis virus) and TCV(Turnip crinkle virus) RdRp. Transient in planta assays based on agroinfiltration and an infectious clone of TBSV demonstrated the inhibition of the replication of TBSV(Tomato bushy stunt virus). Epitope mapping showed that the selected scFvs target the motif E of RdRp which is involved in template binding.Moreover T1 plants of transgenic lines of N. benthamiana expressing different scFvs either in the cytoplasm or the ER (endoplasmic reticulum) showed a high level of resistance against infection with TBSV and RCNMV(Red clover necrotic mosaic virus) upon inoculation with virus particles. This is the first report that scFvs against a RdRp of a plant viruses can inhibit viral replication in vivo. The resistance is even efficient against viruses belonging to different virus families.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Das Hepatitis C Virus (HCV) ist ein umhülltes Virus aus der Familie der Flaviviridae. Es besitzt ein Plusstrang-RNA Genom von ca. 9600 Nukleotiden Länge, das nur ein kodierendes Leseraster besitzt. Das Genom wird am 5’ und 3’ Ende von nicht-translatierten Sequenzen (NTRs) flankiert, welche für die Translation und vermutlich auch Replikation von Bedeutung sind. Die 5’ NTR besitzt eine interne Ribosomeneintrittsstelle (IRES), die eine cap-unabhängige Translation des ca. 3000 Aminosäure langen viralen Polyproteins erlaubt. Dieses wird ko- und posttranslational von zellulären und viralen Proteasen in 10 funktionelle Komponenten gespalten. Inwieweit die 5’ NTR auch für die Replikation der HCV RNA benötigt wird, war zu Beginn der Arbeit nicht bekannt. Die 3’ NTR besitzt eine dreigeteilte Struktur, bestehend aus einer variablen Region, dem polyU/UC-Bereich und der sogenannten X-Sequenz, eine hochkonservierte 98 Nukleotide lange Region, die vermutlich für die RNA-Replikation und möglicherweise auch für die Translation benötigt wird. Die genuae Rolle der 3’ NTR für diese beiden Prozesse war zu Beginn der Arbeit jedoch nicht bekannt. Ziel der Dissertation war deshalb eine detaillierte genetische Untersuchung der NTRs hinsichtlich ihrer Bedeutung für die RNA-Translation und -Replikation. In die Analyse mit einbezogen wurden auch RNA-Strukturen innerhalb der kodierenden Region, die zwischen verschiedenen HCV-Genotypen hoch konserviert sind und die mit verschiedenen computer-basierten Modellen vorhergesagt wurden. Zur Kartierung der für RNA-Replikation benötigten Minimallänge der 5’ NTR wurde eine Reihe von Chimären hergestellt, in denen unterschiedlich lange Bereiche der HCV 5’ NTR 3’ terminal mit der IRES des Poliovirus fusioniert wurden. Mit diesem Ansatz konnten wir zeigen, dass die ersten 120 Nukleotide der HCV 5’ NTR als Minimaldomäne für Replikation ausreichen. Weiterhin ergab sich eine klare Korrelation zwischen der Länge der HCV 5’ NTR und der Replikationseffizienz. Mit steigender Länge der 5’ NTR nahm auch die Replikationseffizienz zu, die dann maximal war, wenn das vollständige 5’ Element mit der Poliovirus-IRES fusioniert wurde. Die hier gefundene Kopplung von Translation und Replikation in der HCV 5’ NTR könnte auf einen Mechanismus zur Regulation beider Funktionen hindeuten. Es konnte allerdings noch nicht geklärt werden, welche Bereiche innerhalb der Grenzen des IRES-Elements genau für die RNA-Replikation benötigt werden. Untersuchungen im Bereich der 3’ NTR ergaben, dass die variable Region für die Replikation entbehrlich, die X-Sequenz jedoch essentiell ist. Der polyU/UC-Bereich musste eine Länge von mindestens 11-30 Uridinen besitzen, wobei maximale Replikation ab einer Länge von 30-50 Uridinen beobachtet wurde. Die Addition von heterologen Sequenzen an das 3’ Ende der HCV-RNA führte zu einer starken Reduktion der Replikation. In den hier durchgeführten Untersuchungen zeigte keines der Elemente in der 3’ NTR einen signifikanten Einfluss auf die Translation. Ein weiteres cis aktives RNA-Element wurde im 3’ kodierenden Bereich für das NS5B Protein beschrieben. Wir fanden, dass Veränderungen dieser Struktur durch stille Punktmutationen die Replikation hemmten, welche durch die Insertion einer intakten Version dieses RNA-Elements in die variable Region der 3’ NTR wieder hergestellt werden konnte. Dieser Versuchsansatz erlaubte die genaue Untersuchung der für die Replikation kritischen Strukturelemente. Dadurch konnte gezeigt werden, dass die Struktur und die Primärsequenz der Loopbereiche essentiell sind. Darüber hinaus wurde eine Sequenzkomplementarität zwischen dem Element in der NS5B-kodierenden Region und einem RNA-Bereich in der X-Sequenz der 3’ NTR gefunden, die eine sog. „kissing loop“ Interaktion eingehen kann. Mit Hilfe von gezielten Mutationen konnten wir zeigen, dass diese RNA:RNA Interaktion zumindest transient stattfindet und für die Replikation des HCV essentiell ist.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Primate immunodeficiency viruses, or lentiviruses (HIV-1, HIV-2, and SIV), and hepatitis delta virus (HDV) are RNA viruses characterized by rapid evolution. Infection by primate immunodeficiency viruses usually results in the development of acquired immunodeficiency syndrome (AIDS) in humans and AIDS-like illnesses in Asian macaques. Similarly, hepatitis delta virus infection causes hepatitis and liver cancer in humans. These viruses are heterogeneous within an infected patient and among individuals. Substitution rates in the virus genomes are high and vary in different lineages and among sites. Methods of phylogenetic analysis were applied to study the evolution of primate lentiviruses and the hepatitis delta virus. The following results have been obtained: (1) The substitution rate varies among sites of primate lentivirus genes according to the two parameter gamma distribution, with the shape parameter $\alpha$ being close to 1. (2) Primate immunodeficiency viruses fall into species-specific lineages. Therefore, viral transmissions across primate species are not as frequent as suggested by previous authors. (3) Primate lentiviruses have acquired or lost their pathogenicity several times in the course of evolution. (4) Evidence was provided for multiple infections of a North American patient by distinct HIV-1 strains of the B subtype. (5) Computer simulations indicate that the probability of committing an error in testing HIV transmission depends on the number of virus sequences and their length, the divergence times among sequences, and the model of nucleotide substitution. (6) For future investigations of HIV-1 transmissions, using longer virus sequences and avoiding the use of distant outgroups is recommended. (7) Hepatitis delta virus strains are usually related according to the geographic region of isolation. (8) Evolution of HDV is characterized by the rate of synonymous substitution being lower than the nonsynonymous substitution rate and the rate of evolution of the noncoding region. (9) There is a strong preference for G and C nucleotides at the third codon positions of the HDV coding region. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In addition to classically defined immune mechanisms, cell-intrinsic processes can restrict virus infection and have shaped virus evolution. The details of this virus-host interaction are still emerging. Following a genome-wide siRNA screen for host factors affecting replication of Semliki Forest virus (SFV), a positive-strand RNA (+RNA) virus, we found that depletion of nonsense-mediated mRNA decay (NMD) pathway components Upf1, Smg5, and Smg7 led to increased levels of viral proteins and RNA and higher titers of released virus. The inhibitory effect of NMD was stronger when virus replication efficiency was impaired by mutations or deletions in the replicase proteins. Consequently, depletion of NMD components resulted in a more than 20-fold increase in production of these attenuated viruses. These findings indicate that a cellular mRNA quality control mechanism serves as an intrinsic barrier to the translation of early viral proteins and the amplification of +RNA viruses in animal cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An essential function of innate immunity is to distinguish self from non-self and receptors have evolved to specifically recognize viral components and initiate the expression of antiviral proteins to restrict viral replication. Coronaviruses are RNA viruses that replicate in the host cytoplasm and evade innate immune sensing in most cell types, either passively by hiding their viral signatures and limiting exposure to sensors or actively, by encoding viral antagonists to counteract the effects of interferons. Since many cytoplasmic viruses exploit similar mechanisms of innate immune evasion, mechanistic insight into the direct interplay between viral RNA, viral RNA-processing enzymes, cellular sensors and antiviral proteins will be highly relevant to develop novel antiviral targets and to restrict important animal and human infections.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle. Specifically, the formation of double membrane vesicles (DMVs), a hallmark of coronavirus replication, was greatly impaired upon K22 treatment accompanied by near-complete inhibition of viral RNA synthesis. K22-resistant viruses contained substitutions in non-structural protein 6 (nsp6), a membrane-spanning integral component of the viral replication complex implicated in DMV formation, corroborating that K22 targets membrane bound viral RNA synthesis. Besides K22 resistance, the nsp6 mutants induced a reduced number of DMVs, displayed decreased specific infectivity, while RNA synthesis was not affected. Importantly, K22 inhibits a broad range of coronaviruses, including Middle East respiratory syndrome coronavirus (MERS-CoV), and efficient inhibition was achieved in primary human epithelia cultures representing the entry port of human coronavirus infection. Collectively, this study proposes an evolutionary conserved step in the life cycle of positive-stranded RNA viruses, the recruitment of cellular membranes for viral replication, as vulnerable and, most importantly, druggable target for antiviral intervention. We expect this mode of action to serve as a paradigm for the development of potent antiviral drugs to combat many animal and human virus infections.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Protein synthesis is believed to be initiated with the amino acid methionine because the AUG translation initiation codon of mRNAs is recognized by the anticodon of initiator methionine transfer RNA. A group of positive-stranded RNA viruses of insects, however, lacks an AUG translation initiation codon for their capsid protein gene, which is located at the downstream part of the genome. The capsid protein of one of these viruses, Plautia stali intestine virus, is synthesized by internal ribosome entry site-mediated translation. Here we report that methionine is not the initiating amino acid in the translation of the capsid protein in this virus. Its translation is initiated with glutamine encoded by a CAA codon that is the first codon of the capsid-coding region. The nucleotide sequence immediately upstream of the capsid-coding region interacts with a loop segment in the stem–loop structure located 15–43 nt upstream of the 5′ end of the capsid-coding region. The pseudoknot structure formed by this base pair interaction is essential for translation of the capsid protein. This mechanism for translation initiation differs from the conventional one in that the initiation step controlled by the initiator methionine transfer RNA is not necessary.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Brome mosaic virus (BMV), a member of the alphavirus-like superfamily of positive-strand RNA viruses, encodes two proteins, 1a and 2a, that interact with each other, with unidentified host proteins, and with host membranes to form the viral RNA replication complex. Yeast expressing 1a and 2a support replication and subgenomic mRNA synthesis by BMV RNA3 derivatives. Using a multistep selection and screening process, we have isolated yeast mutants in multiple complementation groups that inhibit BMV-directed gene expression. Three complementation groups, represented by mutants mab1–1, mab2–1, and mab3–1 (for maintenance of BMV functions), were selected for initial study. Each of these mutants has a single, recessive, chromosomal mutation that inhibits accumulation of positive- and negative-strand RNA3 and subgenomic mRNA. BMV-directed gene expression was inhibited when the RNA replication template was introduced by in vivo transcription from DNA or by transfection of yeast with in vitro transcripts, confirming that cytoplasmic RNA replication steps were defective. mab1–1, mab2–1, and mab3–1 slowed yeast growth to varying degrees and were temperature-sensitive, showing that the affected genes contribute to normal cell growth. In wild-type yeast, expression of the helicase-like 1a protein increased the accumulation of 2a mRNA and the polymerase-like 2a protein, revealing a new level of viral regulation. In association with their other effects, mab1–1 and mab2–1 blocked the ability of 1a to stimulate 2a mRNA and protein accumulation, whereas mab3–1 had elevated 2a protein accumulation. Together, these results show that BMV RNA replication in yeast depends on multiple host genes, some of which directly or indirectly affect the regulated expression and accumulation of 2a.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The genome expression of positive-stranded RNA viruses starts with translation rather than transcription. For some viruses, the genome is the only viral mRNA and expression is regulated primarily at the translational level and by limited proteolysis of polyproteins. Other virus groups also generate subgenomic mRNAs later in the reproductive cycle. For nidoviruses, subgenomic mRNA synthesis (transcription) is discontinuous and yields a 5′ and 3′ coterminal nested set of mRNAs. Nidovirus transcription is not essential for genome replication, which relies on the autoprocessing products of two replicase polyproteins that are translated from the genome. We now show that the N-terminal replicase subunit, nonstructural protein 1 (nsp1), of the nidovirus equine arteritis virus is in fact dispensable for replication but crucial for transcription, thereby coupling replicase expression and subgenomic mRNA synthesis in an unprecedented manner. Nsp1 is composed of two papain-like protease domains and a predicted N-terminal zinc finger, which was implicated in transcription by site-directed mutagenesis. The structural integrity of nsp1 is essential, suggesting that the protease domains form a platform for the zinc finger to operate in transcription.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Copy-choice RNA recombination occurs during viral RNA synthesis when the viral transcription complex switches templates. We demonstrate that RNA-dependent RNA polymerase from bovine viral diarrhea virus and the replicases from three plant-infecting RNA viruses can produce easily detectable recombination products in vitro by switching templates during elongative RNA synthesis. Template sequence and/or structure, and NTP availability affected the frequency of template switch by the transcription complex. Our results provide biochemical support for copy-choice recombination and establish assays for mechanistic analyses of intermolecular RNA recombination in vitro.