164 resultados para Polycaprolactone


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of polycaprolactone (PCL) as a biomaterial, especially in the fields of drug delivery and tissue engineering, has enjoyed significant growth. Understanding how such a device or scaffold eventually degrades in vivo is paramount as the defect site regenerates and remodels. Degradation studies of three-dimensional PCL and PCL-based composite scaffolds were conducted in vitro (in phosphate buffered saline) and in vivo (rabbit model). Results up to 6 months are reported. All samples recorded virtually no molecular weight changes after 6 months, with a maximum mass loss of only about 7% from the PCL-composite scaffolds degraded in vivo, and a minimum of 1% from PCL scaffolds. Overall, crystallinity increased slightly because of the effects of polymer recrystallization. This was also a contributory factor for the observed stiffness increment in some of the samples, while only the PCL-composite scaffold registered a decrease. Histological examination of the in vivo samples revealed good biocompatibility, with no adverse host tissue reactions up to 6 months. Preliminary results of medical-grade PCL scaffolds, which were implanted for 2 years in a critical-sized rabbit calvarial defect site, are also reported here and support our scaffold design goal for gradual and late molecular weight decreases combined with excellent long-term biocompatibility and bone regeneration. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 90A: 906-919, 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bioactive and bioresorbable scaffold fabricated from medical grade poly (epsilon-caprolactone) and incorporating 20% beta-tricalcium phosphate (mPCL–TCP) was recently developed for bone regeneration at load bearing sites. In the present study, we aimed to evaluate bone ingrowth into mPCL–TCP in a large animal model of lumbar interbody fusion. Six pigs underwent a 2-level (L3/4; L5/6) anterior lumbar interbody fusion (ALIF) implanted with mPCL–TCP þ 0.6 mg rhBMP-2 as treatment group while four other pigs implanted with autogenous bone graft served as control. Computed tomographic scanning and histology revealed complete defect bridging in all (100%) specimen from the treatment group as early as 3 months. Histological evidence of continuing bone remodeling and maturation was observed at 6 months. In the control group, only partial bridging was observed at 3 months and only 50% of segments in this group showed complete defect bridging at 6 months. Furthermore, 25% of segments in the control group showed evidence of graft fracture, resorption and pseudoarthrosis. In contrast, no evidence of graft fractures, pseudoarthrosis or foreign body reaction was observed in the treatment group. These results reveal that mPCL–TCP scaffolds could act as bone graft substitutes by providing a suitable environment for bone regeneration in a dynamic load bearing setting such as in a porcine model of interbody spine fusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic polymers have attracted much attention in tissue engineering due to their ability to modulate biomechanical properties. This study investigated the feasibility of processing poly(varepsilon-caprolactone) (PCL) homopolymer, PCL-poly(ethylene glycol) (PEG) diblock, and PCL-PEG-PCL triblock copolymers into three-dimensional porous scaffolds. Properties of the various polymers were investigated by dynamic thermal analysis. The scaffolds were manufactured using the desktop robot-based rapid prototyping technique. Gross morphology and internal three-dimensional structure of scaffolds were identified by scanning electron microscopy and micro-computed tomography, which showed excellent fusion at the filament junctions, high uniformity, and complete interconnectivity of pore networks. The influences of process parameters on scaffolds' morphological and mechanical characteristics were studied. Data confirmed that the process parameters directly influenced the pore size, porosity, and, consequently, the mechanical properties of the scaffolds. The in vitro cell culture study was performed to investigate the influence of polymer nature and scaffold architecture on the adhesion of the cells onto the scaffolds using rabbit smooth muscle cells. Light, scanning electron, and confocal laser microscopy showed cell adhesion, proliferation, and extracellular matrix formation on the surface as well as inside the structure of both scaffold groups. The completely interconnected and highly regular honeycomb-like pore morphology supported bridging of the pores via cell-to-cell contact as well as production of extracellular matrix at later time points. The results indicated that the incorporation of hydrophilic PEG into hydrophobic PCL enhanced the overall hydrophilicity and cell culture performance of PCL-PEG copolymer. However, the scaffold architecture did not significantly influence the cell culture performance in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the resorbable-polymer-boom of the 1970s and 1980s, polycaprolactone (PCL) was used in the biomaterials field and a number of drug-delivery devices. Its popularity was soon superseded by faster resorbable polymers which had fewer perceived disadvantages associated with long term degradation (up to 3-4 years) and intracellular resorption pathways; consequently, PCL was almost forgotten for most of two decades. Recently, a resurgence of interest has propelled PCL back into the biomaterials-arena. The superior rheological and viscoelastic properties over many of its aliphatic polyester counterparts renders PCL easy to manufacture and manipulate into a large range of implants and devices. Coupled with relatively inexpensive production routes and FDA approval, this provides a promising platform for the production of longer-term degradable implants which may be manipulated physically, chemically and biologically to possess tailorable degradation kinetics to suit a specific anatomical site. This review will discuss the application of PCL as a biomaterial over the last two decades focusing on the advantages which have propagated its return into the spotlight with a particular focus on medical devices, drug delivery and tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing use of biodegradable devices in tissue engineering and regenerative medicine means it is essential to study and understand their degradation behaviour. Accelerated degradation systems aim to achieve similar degradation profiles within a shorter period of time, compared with standard conditions. However, these conditions only partially mimic the actual situation, and subsequent analyses and derived mechanisms must be treated with caution and should always be supported by actual long-term degradation data obtained under physiological conditions. Our studies revealed that polycaprolactone (PCL) and PCL-composite scaffolds degrade very differently under these different degradation conditions, whilst still undergoing hydrolysis. Molecular weight and mass loss results differ due to the different degradation pathways followed (surface degradation pathway for accelerated conditions and bulk degradation pathway for simulated physiological conditions). Crystallinity studies revealed similar patterns of recrystallization dynamics, and mechanical data indicated that the scaffolds retained their functional stability, in both instances, over the course of degradation. Ultimately, polymer degradation was shown to be chiefly governed by molecular weight, crystallinity susceptibility to hydrolysis and device architecture considerations whilst maintaining its thermodynamic equilibrium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of ultra-thin films as dressings for cutaneous wounds could prove advantageous in terms of better conformity to wound topography and improved vapour transmission. For this purpose, ultra-thin poly(epsilon-caprolactone) (PCL) films of 5-15 microm thickness were fabricated via a biaxial stretching technique. To evaluate their in vivo biocompatibility and feasibility as an external wound dressing, PCL films were applied over full and partial-thickness wounds in rat and pig models. Different groups of PCL films were used: untreated, NaOH-treated, untreated with fibrin, NaOH-treated with perforations, and NaOH-treated with fibrin and S-nitrosoglutathione. Wounds with no external dressings were used as controls. Wound contraction rate, histology and biomechanical analyses were carried out. Wounds re-epithelialized completely at a comparable rate. Formation of a neo-dermal layer and re-epithelialization were observed in all the wounds. A lower level of fibrosis was observed when PCL films were used, compared to the control wounds. Ultimate tensile strength of the regenerated tissue in rats reached 50-60% of that in native rat skin. Results indicated that biaxially-stretched PCL films did not induce inflammatory reactions when used in vivo as a wound dressing and supported the normal wound healing process in full and partial-thickness wounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our strategy entails investigating the influence of varied concentrations (0, 10, 100 and 1000 ng/ml) of human recombinant bone morphogenetic protein-2 (rhBMP-2) on the osteogenic expression of canine osteoblasts, seeded onto poly-caprolactone 20% tricalcium phosphate (PCL-TCP) scaffolds in vitro. Biochemical assay revealed that groups with rhBMP-2 displayed an initial burst in cell growth that was not dose-dependent. However, after 13 days, cell growth declined to a value similar to control. Significantly less cell growth was observed for construct with 1000 ng/ml of rhBMP-2 from 20 days onwards. Confocal microscopy confirmed viability of osteoblasts and at day 20, groups seeded with rhBMP-2 displayed heightened cell death as compared to control. Phase contrast and scanning electron microscopy revealed that osteoblasts heavily colonized surfaces, rods and pores of the PCL-TCP scaffolds. This was consistent for all groups. Finally, Von Kossa and osteocalcin assays demonstrated that cells from all groups maintained their osteogenic phenotype throughout the experiment. Calcification was observed as early as four days after stimulation for groups seeded with rhBMP-2. In conclusion, rhBMP-2 seems to enhance the differentiated function of canine osteoblasts in a non-dose dependent manner. This resulted in accelerated mineralization, followed by death of osteoblasts as they underwent terminal differentiation. Notably, PCL-TCP scaffolds seeded only with canine osteoblasts could sustain excellent osteogenic expression in vitro. Hence, the synergy of PCL with bioactive TCP and rhBMP-2 in a novel composite scaffold, could offer an exciting approach for bone regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melt electrospinning is one aspect of electrospinning with relatively little published literature, although the technique avoids solvent accumulation and/or toxicity which is favoured in certain applications. In the study reported, we melt-electrospun blends of poly(ε-caprolactone) (PCL) and an amphiphilic diblock copolymer consisting of poly(ethylene glycol) and PCL segments (PEG-block-PCL). A custom-made electrospinning apparatus was built and various combinations of instrument parameters such as voltage and polymer feeding rate were investigated. Pure PEG-block-PCL copolymer melt electrospinning did not result in consistent and uniform fibres due to the low molecular weight, while blends of PCL and PEG-block-PCL, for some parameter combinations and certain weight ratios of the two components, were able to produce continuous fibres significantly thinner (average diameter of ca 2 µm) compared to pure PCL. The PCL fibres obtained had average diameters ranging from 6 to 33 µm and meshes were uniform for the lowest voltage employed while mesh uniformity decreased when the voltage was increased. This approach shows that PCL and blends of PEG-block-PCL and PCL can be readily processed by melt electrospinning to obtain fibrous meshes with varied average diameters and morphologies that are of interest for tissue engineering purposes. Copyright © 2010 Society of Chemical Industry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports the factors controlling aerosolization of salbutamol sulfate (SS) from mixtures with polycaprolactone (PCL) microspheres fabricated using an emulsion technique with polyvinyl alcohol (PVA) as stabilizer. The fine particle fraction (FPF) of SS from PCL measured by a twin-stage impinger was unexpectedly found to be zero, although scanning electron microscopy showed that the drug coated the entire microsphere. Precoating the microspheres with magnesium stearate (MgSt) excipient solutions (1%–2%) significantly increased (p < 0.05, n = 5) the FPF of SS (11.4%–15.4%), whereas precoating with leucine had a similar effect (FPF = 11.3 ± 1.1%), but was independent of the solution concentration. The force of adhesion (by atomic force microscopy) between the PCL microspheres and SS was reduced from 301.4 ± 21.7 nN to 110.9 ± 30.5 nN and 121.8 ± 24.6 nN, (p < 0.05, n = 5) for 1% and 2% MgSt solutions, respectively, and to 148.1 ± 21.0 nN when coated with leucine. The presence of PVA on the PCL microspheres (detected by X-ray photoelectron spectroscopy) affected the detachment of SS due to strong adhesion between the two, presumably due to capillary forces acting between them. Precoating the microspheres with excipients increased the FPF significantly by reducing the drug–carrier adhesion. © 2011 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 101:733–745, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the application of a novel scaffold design in a sheep thoracic spine model for spine deformity correction. The combination of the calcium-phosphate coated polycaprolactone scaffolds with recombinant human bone morphogenic protein-2 (rhBMP-2) are intended as a future bone graft substitute in ensuring the stability of bony intervertebral fusion. A solid free-form fabrication process based on melt extrusion has been utilized in the manufacturing of these scaffolds. To date there are no studies examining the use of such biodegradable implants in a sheep thoracic spine model. The success of anterior scoliosis surgery in humans depends on achieving a solid bony fusion between adjacent vertebrae after the intervertebral discs have been surgically cleared and the disc spaces filled with graft material. Due to limited availability of autograft, there is much current interest in the development of synthetic scaffolds in combination with growth factors such as recombinant human bone morphogenetic protein (rhBMP-2) to achieve a solid bony fusion following scoliosis surgery.