720 resultados para Plasmodium malariae


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A malária constitui um problema de saúde pública, que tem vindo a agravar-se, sendo crescente a necessidade de estratégias renovadas para o seu controlo, como a interrupção do ciclo esporogónico. Deste modo, é essencial compreender as respostas imunológicas de Anopheles anti-Plasmodium. Demonstrou-se anteriormente, que a inibição de transglutaminases, enzimas que participam em vários processos biológicos ao catalisarem a formação de ligações covalentes entre péptidos, agrava a infecção em mosquitos pelo parasita. O presente trabalho tem por objectivo caracterizar as transglutaminases AGAP009098 e AGAP009100 de Anopheles gambiae. Os métodos utilizados para este efeito foram: a sequenciação de regiões dos genes AGAP009098 e AGAP009100; a clonagem molecular de fragmentos da região codificante do gene AGAP009098, usando o vector plasmídico pET–28a(+) e Escherichia coli como sistema de expressão; e PCR em Tempo Real para analisar a expressão relativa dos genes AGAP009098 e AGAP009100 nos diferentes os estádios de desenvolvimento. AGAP009098 é expressa ubiquamente e AGAP009100 a partir do estádio pupa. Estes resultados apontam para a conclusão de que AGAP009098 e AGAP009100 poderão desempenhar funções em processos biológicos relevantes, por exemplo na defesa imunitária, ou no desenvolvimento. Os péptidos recombinantes, obtidos a partir da clonagem com sucesso de fragmentos da região codificante do gene AGAP009098, constituem uma ferramenta importante para averiguar a função destas TGases, no futuro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Plasmodium falciparum(P. falciparum) merozoite surfaceprotein 2 (MSP-2) is one of bloodstage proteins that are associated withprotection from malaria. MSP-2 consistsof a highly polymorphic centralrepeat region flanked by a dimorphicregion that defines the two allelicfamilies, 3D7 and FC27; N- and Cterminalregions are conserved domains.Long synthetic peptides (LSP)representing the two allelic familiesof MSP-2 and constant regions arerecognized by sera from donors livingin endemic areas; and specific antibodies(Abs) are associated with protectionand active in antibody dependentcellular inhibition (ADCI) in vitro.However, the fine specificity ofAb response to the two allelic familiesof MSP-2 is unknown. Methods: Peptidesrepresenting dimorphic regionof 3D7 and FC27 families and theirC-terminal (common fragment to thetwo families) termed 3D7-D (88 aa),FC27-D (48 aa) and C (40 aa) respectivelywere synthesized. Overlapping20 mer peptides covering dimorphicand constant regions of two familieswere also synthesized for epitopemapping. Human sera were obtainedfrom donors living in malaria endemicareas. SpecificDand CregionsAbs were purified from single or poolhuman sera. Sera from mice were obtainedafter immunization with thetwo families LSP mixture in three differentadjuvants: alhydrogel (Alum),Glucopyranosyl Lipid Adjuvant-Stableoil-in-water Emulsion (GLA-SE)and Virosome. For ADCI, P. falciparum(strain 3D7) parasite wasmaintained in culture at 0.5% parasitemiaand 4% hematocrit in air tightbox at love oxygen (2%) and 37 ºC.Results: We identified several epitopesfrom the dimorphic and constantregions of both families of MSP-2, inmice and humans (adults and children).In human, most recognizedepitopes were the same in differentendemic regions for each domain ofthe two families of MSP-2. In mice,the differential recognition of epitopewas depending on the strain of mouseand interestingly on the adjuvantused. GLA-SE and alum as adjuvantswere more often associated with therecognition of multiple epitopes thanvirosomes. Epitope-specific Abs recognizednative merozoites of P.falciparum and were active in ADCIto block development of parasite.Conclusion: The delineation of a limitednumber of epitopes could be exploitedto develop MSP-2 vaccinesactive on both allelic families ofMSP-2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used the cellular slime mold, Dictyostelium discoideum (Dd), to express the Plasmodium falciparum circumsporozoite protein (CS), a potential component of a subunit vaccine against malaria. This was accomplished via an expression vector based on the discoidin I-encoding gene promoter, in which we linked a sequence coding for a Dd leader peptide to the almost complete CS coding region (pEDII-CS). CS production at both the mRNA and protein levels is induced by starving cells in a simple phosphate buffer. Variation in pH or cell density does not seem to influence CS synthesis. CS-producing cells can be grown either on their normal substrate, bacteria, or on a semi-synthetic media, without affecting CS accumulation level. The CS produced in Dd seems similar to the natural parasite protein as judged by its size and epitope recognition by a panel of monoclonal antibodies. We constructed a second expression vector in which the CS is under the control of a Dd ras promoter. CS accumulation can then be induced by external addition of cAMP. Such a tightly regulated promoter may allow expression of proteins potentially toxic to the cell. Thus, Dd could be a useful eukaryotic system to produce recombinant proteins, in particular from human or animal parasites like P. falciparum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is widely accepted that antibody responses against the human parasitic pathogen Plasmodium falciparum protect the host from the rigors of severe malaria and death. However, there is a continuing need for the development of in vitro correlate assays of immune protection. To this end, the capacity of human monoclonal and polyclonal antibodies in eliciting phagocytosis and parasite growth inhibition via Fcγ receptor-dependent mechanisms was explored. In examining the extent to which sequence diversity in merozoite surface protein 2 (MSP2) results in the evasion of antibody responses, an unexpectedly high level of heterologous function was measured for allele-specific human antibodies. The dependence on Fcγ receptors for opsonic phagocytosis and monocyte-mediated antibody-dependent parasite inhibition was demonstrated by the mutation of the Fc domain of monoclonal antibodies against both MSP2 and a novel vaccine candidate, peptide 27 from the gene PFF0165c. The described flow cytometry-based functional assays are expected to be useful for assessing immunity in naturally infected and vaccinated individuals and for prioritizing among blood-stage antigens for inclusion in blood-stage vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Plasmodium falciparum MSP2 is a blood stage protein that is associated with protection against malaria. It was shown that the MSP2 dimorphic (D) and constant (C) regions were well recognized by immune human antibodies, and were characterized by major conserved epitopes in different endemic areas and age groups. These Abs recognized merozoite-derived proteins in WB and IFA. Here, the goal was to determine in mice the immunogenicity of the two allelic MSP2 D and C domains formulated with different adjuvants, for their possible use in future clinical studies. METHOD: Female A/J, C3H, and ICR mice were immunized subcutaneously 3 times at 3-week interval with a mixture of allelic and conserved MSP2 long synthetic peptides formulated with different adjuvants. One week after the third injection, sera from each group were obtained and stored at -20°C for subsequent testing. RESULTS: Both domains of the two MSP2 families are immunogenic and the fine specificity and intensity of the Ab responses are dependent on mouse strains and adjuvants. The major epitopes were restricted to the 20-mer peptide sequences comprising the last 8aa of D and first 12aa of C of the two allelic families and the first 20aa of the C region, this for most strains and adjuvants. Strong immune responses were associated with GLA-SE adjuvant and its combination with other TLR agonists (CpG or GDQ) compared to alhydrogel and Montanide. Further, the elicited Abs were also capable of recognizing Plasmodium-derived MSP2 and inhibiting parasite growth in ADCI. CONCLUSION: The data provide a valuable opportunity to evaluate in mice different adjuvant and antigen formulations of a candidate vaccine containing both MSP2 D and C fragments. The formulations with GLA-SE seem to be a promising option to be compared with the alhydrogel one in human clinical trials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El conocimiento de las proteínas implicadas en el proceso de invasión de los merozoitos a los eritrocitos por Plasmodium es el punto de partida para el desarrollo de nuevas estrategias para controlar la malaria. Muchas de estas proteínas han sido estudiadas en Toxoplasma gondii, donde se han identificado las proteínas que pertenecen al Tight Junction (TJ), el cual permite una interacción fuerte entre las membranas de la célula huésped y el parásito, necesaria para la invasión parasitaria. En este género, cuatro proteínas del cuello de las roptrias (RON2, RON4, RON5 y RON8) y una proteína de micronemas (TgAMA-1) se han encontrado como parte del TJ. En Plasmodium falciparum, se han caracterizado las proteínas PfRON2 y PfRON4. En el presente estudio se realiza la identificación de la proteína PfRON5, una proteína de ~110 kDa que se expresa en las etapas de merozoitos y esquizontes de la cepa FCB-2 utilizando técnicas de biología molecular, bioinformática e inmuoquímica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunity to severe malaria is the first level of immunity acquired to Plasmodium falciparum. Antibodies to the variant antigen PfEMP1 (P. falciparum erythrocyte membrane protein 1) present at the surface of the parasitized red blood cell (pRBC) confer protection by blocking microvascular sequestration. Here we have generated antibodies to peptide sequences of subdomain 2 of PfEMP1-DBL1a previously identified to be associated with severe or mild malaria. A set of sera generated to the amino acid sequence KLQTLTLHQVREYWWALNRKEVWKA, containing the motif ALNRKE, stained the live pRBC. 50% of parasites tested (7/14) were positive both in flow cytometry and immunofluorescence assays with live pRBCs including both laboratory strains and in vitro adapted clinical isolates. Antibodies that reacted selectively with the sequence REYWWALNRKEVWKA in a 15-mer peptide array of DBL1a-domains were also found to react with the pRBC surface. By utilizing a peptide array to map the binding properties of the elicited anti-DBL1a antibodies, the amino acids WxxNRx were found essential for antibody binding. Complementary experiments using 135 degenerate RDSM peptide sequences obtained from 93 Ugandan patient-isolates showed that antibody binding occurred when the amino acids WxLNRKE/D were present in the peptide. The data suggests that the ALNRKE sequence motif, associated with severe malaria, induces strain-transcending antibodies that react with the pRBC surface

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A completely effective vaccine for malaria (one of the major infectious diseases worldwide) is not yet available; different membrane proteins involved in parasite-host interactions have been proposed as candidates for designing it. It has been found that proteins encoded by the merozoite surface protein (msp)-7 multigene family are antibody targets in natural infection; the nucleotide diversity of three Pvmsp-7 genes was thus analyzed in a Colombian parasite population. By contrast with P. falciparum msp-7 loci and ancestral P. vivax msp-7 genes, specie-specific duplicates of the latter specie display high genetic variability, generated by single nucleotide polymorphisms, repeat regions, and recombination. At least three major allele types are present in Pvmsp-7C, Pvmsp-7H and Pvmsp-7I and positive selection seems to be operating on the central region of these msp-7 genes. Although this region has high genetic polymorphism, the C-terminus (Pfam domain ID: PF12948) is conserved and could be an important candidate when designing a subunit-based antimalarial vaccine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Plasmodium vivax is one of the five species causing malaria in human beings, affecting around 391 million people annually. The development of an anti-malarial vaccine has been proposed as an alternative for controlling this disease. However, its development has been hampered by allele-specific responses produced by the high genetic diversity shown by some parasite antigens. Evaluating these antigens’ genetic diversity is thus essential when designing a completely effective vaccine. Methods The gene sequences of Plasmodium vivax p12 (pv12) and p38 (pv38), obtained from field isolates in Colombia, were used for evaluating haplotype polymorphism and distribution by population genetics analysis. The evolutionary forces generating the variation pattern so observed were also determined. Results Both pv12 and pv38 were shown to have low genetic diversity. The neutral model for pv12 could not be discarded, whilst polymorphism in pv38 was maintained by balanced selection restricted to the gene’s 5′ region. Both encoded proteins seemed to have functional/structural constraints due to the presence of s48/45 domains, which were seen to be highly conserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The tight junction (TJ) is one of the most important structures established during merozoite invasion of host cells and a large amount of proteins stored in Toxoplasma and Plasmodium parasites’ apical organelles are involved in forming the TJ. Plasmodium falciparum and Toxoplasma gondii apical membrane antigen 1 (AMA-1) and rhoptry neck proteins (RONs) are the two main TJ components. It has been shown that RON4 plays an essential role during merozoite and sporozoite invasion to target cells. This study has focused on characterizing a novel Plasmodium vivax rhoptry protein, RON4, which is homologous to PfRON4 and PkRON4. Methods: The ron4 gene was re-annotated in the P. vivax genome using various bioinformatics tools and taking PfRON4 and PkRON4 amino acid sequences as templates. Gene synteny, as well as identity and similarity values between open reading frames (ORFs) belonging to the three species were assessed. The gene transcription of pvron4, and the expression and localization of the encoded protein were also determined in the VCG-1 strain by molecular and immunological studies. Nucleotide and amino acid sequences obtained for pvron4 in VCG-1 were compared to those from strains coming from different geographical areas. Results: PvRON4 is a 733 amino acid long protein, which is encoded by three exons, having similar transcription and translation patterns to those reported for its homologue, PfRON4. Sequencing PvRON4 from the VCG-1 strain and comparing it to P. vivax strains from different geographical locations has shown two conserved regions separated by a low complexity variable region, possibly acting as a “smokescreen”. PvRON4 contains a predicted signal sequence, a coiled-coil α-helical motif, two tandem repeats and six conserved cysteines towards the carboxyterminus and is a soluble protein lacking predicted transmembranal domains or a GPI anchor. Indirect immunofluorescence assays have shown that PvRON4 is expressed at the apical end of schizonts and co-localizes at the rhoptry neck with PvRON2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Plasmodium vivax continues to be the most widely distributed malarial parasite species in tropical and sub-tropical areas, causing high morbidity indices around the world. Better understanding of the proteins used by the parasite during the invasion of red blood cells is required to obtain an effective vaccine against this disease. This study describes characterizing the P. vivax asparagine-rich protein (PvARP) and examines its antigenicity in natural infection. Methods The target gene in the study was selected according to a previous in silico analysis using profile hidden Markov models which identified P. vivax proteins that play a possible role in invasion. Transcription of the arp gene in the P. vivax VCG-1 strain was here evaluated by RT-PCR. Specific human antibodies against PvARP were used to confirm protein expression by Western blot as well as its subcellular localization by immunofluorescence. Recognition of recombinant PvARP by sera from P. vivax-infected individuals was evaluated by ELISA. Results VCG-1 strain PvARP is a 281-residue-long molecule, which is encoded by a single exon and has an N-terminal secretion signal, as well as a tandem repeat region. This protein is expressed in mature schizonts and is located on the surface of merozoites, having an apparent accumulation towards their apical pole. Sera from P. vivax-infected patients recognized the recombinant, thereby suggesting that this protein is targeted by the immune response during infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Rhoptries are specialized organelles from parasites belonging to the phylum Apicomplexa; they secrete their protein content during invasion of host target cells and are sorted into discrete subcompartments within rhoptry neck or bulb. This distribution is associated with these proteins’ role in tight junction (TJ) and parasitophorous vacuole (PV) formation, respectively. Methods: Plasmodium falciparum RON2 amino acid sequence was used as bait for screening the codifying gene for the homologous protein in the Plasmodium vivax genome. Gene synteny, as well as identity and similarity values, were determined for ron2 and its flanking genes among P. falciparum, P. vivax and other malarial parasite genomes available at PlasmoDB and Sanger Institute databases. Pvron2 gene transcription was determined by RT-PCR of cDNA obtained from the P. vivax VCG-1 strain. Protein expression and localization were assessed by Western blot and immunofluorescence using polyclonal anti-PvRON2 antibodies. Co-localization was confirmed using antibodies directed towards specific microneme and rhoptry neck proteins. Results and discussion: The first P. vivax rhoptry neck protein (named here PvRON2) has been identified in this study. PvRON2 is a 2,204 residue-long protein encoded by a single 6,615 bp exon containing a hydrophobic signal sequence towards the amino-terminus, a transmembrane domain towards the carboxy-terminus and two coiled coil a-helical motifs; these are characteristic features of several previously described vaccine candidates against malaria. This protein also contains two tandem repeats within the interspecies variable sequence possibly involved in evading a host’s immune system. PvRON2 is expressed in late schizonts and localized in rhoptry necks similar to what has been reported for PfRON2, which suggests its participation during target cell invasion. Conclusions: The identification and partial characterization of the first P. vivax rhoptry neck protein are described in the present study. This protein is homologous to PfRON2 which has previously been shown to be associated with PfAMA-1, suggesting a similar role for PvRON2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of Plasmodium falciparum parasitized RBC (pRBC) to form rosettes with normal RBC is linked to the virulence of the parasite and RBC polymorphisms that weaken rosetting confer protection against severe malaria. The adhesin PfEMP1 mediates the binding and specific antibodies prevent sequestration in the micro-vasculature, as seen in animal models. Here we demonstrate that epitopes targeted by rosette disrupting antibodies converge in the loop of subdomain 3 (SD3) which connects the h6 and h7 α-helices of PfEMP1-DBL1α. Both monoclonal antibodies and polyclonal IgG, that bound to epitopes in the SD3-loop, stained the surface of pRBC, disrupted rosettes and blocked direct binding of recombinant NTS-DBL1α to RBC. Depletion of polyclonal IgG raised to NTS-DBL1α on a SD3 loop-peptide removed the anti-rosetting activity. Immunizations with recombinant subdomain 1 (SD1), subdomain 2 (SD2) or SD3 all generated antibodies reacting with the pRBC-surface but only the sera of animals immunized with SD3 disrupted rosettes. SD3-sequences were found to segregate phylogenetically into two groups (A/B). Group A included rosetting sequences that were associated with two cysteine-residues present in the SD2-domain while group B included those with three or more cysteines. Our results suggest that the SD3 loop of PfEMP1-DBL1α is an important target of anti-rosetting activity, clarifying the molecular basis of the development of variant-specific rosette disrupting antibodies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunity to severe malaria is the first level of immunity acquired to Plasmodium falciparum. Antibodies to the variant antigen PfEMP1 (P. falciparum erythrocyte membrane protein 1) present at the surface of the parasitized red blood cell (pRBC) confer protection by blocking microvascular sequestration. Here we have generated antibodies to peptide sequences of subdomain 2 of PfEMP1-DBL1 alpha previously identified to be associated with severe or mild malaria. A set of sera generated to the amino acid sequence KLQTLTLHQVREYWWALNRKEVWKA, containing the motif ALNRKE, stained the live pRBC. 50% of parasites tested (7/14) were positive both in flow cytometry and immunofluorescence assays with live pRBCs including both laboratory strains and in vitro adapted clinical isolates. Antibodies that reacted selectively with the sequence REYWWALNRKEVWKA in a 15-mer peptide array of DBL1 alpha-domains were also found to react with the pRBC surface. By utilizing a peptide array to map the binding properties of the elicited anti-DBL1 alpha antibodies, the amino acids WxxNRx were found essential for antibody binding. Complementary experiments using 135 degenerate RDSM peptide sequences obtained from 93 Ugandan patient-isolates showed that antibody binding occurred when the amino acids WxLNRKE/D were present in the peptide. The data suggests that the ALNRKE sequence motif, associated with severe malaria, induces strain-transcending antibodies that react with the pRBC surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A completely effective vaccine for malaria (one of the major infectious diseases worldwide) is not yet available; different membrane proteins involved in parasite-host interactions have been proposed as candidates for designing it. It has been found that proteins encoded by the merozoite surface protein (msp)-7 multigene family are antibody targets in natural infection; the nucleotide diversity of three Pvmsp-7 genes was thus analyzed in a Colombian parasite population. By contrast with P. falciparum msp-7 loci and ancestral P. vivax msp-7 genes, specie-specific duplicates of the latter specie display high genetic variability, generated by single nucleotide polymorphisms, repeat regions, and recombination. At least three major allele types are present in Pvmsp-7C, Pvmsp-7H and Pvmsp-7I and positive selection seems to be operating on the central region of these msp-7 genes. Although this region has high genetic polymorphism, the C-terminus (Pfam domain ID: PF12948) is conserved and could be an important candidate when designing a subunit-based antimalarial vaccine.