917 resultados para Pathogenic fungi


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Includes bibliographies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sandpits used by children are frequently visited by wild life which constitutes a source of fungal pathogens and allergenic fungi. This study aimed to take an unannounced snapshot of the urban levels of fungal contaminants in sands, using for this purpose two public recreational parks, three elementary schools and two kindergartens. All samples were from Lisbon and neighboring municipalities and were tested for fungi of clinical interest. Potentially pathogenic fungi were isolated from all samples besides one. Fusarium dimerum (32.4%) was found to be the dominant species in one park and Chrysonilia spp. in the other (46.6%). Fourteen different species and genera were detected and no dermatophytes were found. Of a total of 14 species and genera, the fungi most isolated from the samples of the elementary schools were Penicillium spp. (74%), Cladophialophora spp. (38%) and Cladosporium spp. (90%). Five dominant species and genera were isolated from the kindergartens. Penicillium spp. was the only genus isolated in one, though with remarkably high counts (32500 colony forming units per gram). In the other kindergarten Penicillium spp. were also the most abundant species, occupying 69% of all the fungi found. All of the samples exceeded the Maximum Recommended Value (MRV) for beach sand defined by Brandão et al. 2011, which are currently the only quantitative guidelines available for the same matrix. The fungi found confirm the potential risk of exposure of children to keratinophilic fungi and demonstrates that regular cleaning or replacing of sand needs to be implemented in order to minimize contamination.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of inputs containing phosphites have been presenting results in many studies, taking on importance to the control of diseases in some cultures and demonstrating the resistance induction in seedlings, with ability to activate defense mechanisms, conferring protection to plants against microorganisms. The soybean crop is recognized for its importance in providing grains and derivatives for human consumption, animal, production of biofuels, pharmaceuticals, among others. Positive results obtained through studies based on resistance inducers in some cultures arouse the interest for further study. The objective of this study was to evaluate the effect of potassium phosphites on the resistance induction and treatment of soybean seeds. Therefore were conducted four laboratory studies at the Federal Technological University of Paraná, Campus of Dois Vizinhos. In the first study it was evaluated the quality attributes of the seeds and the resistance induction as seed treatment. Then it was verified that phosphites have action upon the seedlings metabolism in due to seed treatment, having the phosphite Reforce® contributed to seed quality attributes and phosphites FitofosK® and Fitofos K Plus® induced the resistance increasing the activity of β-1,3-glucanase. In the second study it was evaluated the the resistance induction in soybean cotyledons, in which the phosphites demonstrated induction potential of phytoalexin gliceolin. In the third study It was evaluated the soybean seed health treated with potassium phosphites.. it was observed that the phosphites reduced the incidence of many fungi on seeds, especially of storage fungi like Aspergillus sp. and Fusarium semitectum. In the fourth study it was evaluated the in vitro effect of potassium phosphites on pathogenic fungi of the culture. And it was found direct action of phosphites on the mycelial growth of Fusarium semitectum, Pythium sp. and Sclerotinia sclerotiorum. Based on these results, we concluded that potassium phosphites have potential in seeds treatment, as resistance inducer and on in vitro control of phytopathogens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Molecular, 2015.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Issued in cooperation with Kansas Agricultural Experiment Station.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calonectria ilicicola, Gliocladiopsis sp. and Ilyonectria liriodendri were isolated from diseased roots of young avocado trees. Pathogenicity studies with seedlings of three avocado cultivars, Velvick, Hass and Reed, demonstrated that Calonectria ilicicola is a severe root rot pathogen, reducing the biomass of healthy roots, and reducing plant height over time. Calonectria ilicicola was re-isolated from diseased roots. Ilyonectria liriodendri and Gliocladiopsis sp. were not pathogenic and plant height was increased after Gliocladiopsis sp. amendment compared to all other treatments in trials with cvs Velvick and Hass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ectomycorrhizal formation between the host tree, Pinus sylvestris and fungal symbiont, Suillus bovinus was investigated at the molecular level by isolating genes regulating the organization of the actin cytoskeleton in the fungal partner S. bovinus. An Agrobacterium tumefaciens mediated transformation (ATMT) system was developed for the ectomycorrhizal fungi in order to assign specific functions to the cloned molecules. The developed ATMT system was also used to transform a plant pathogenic fungus, Helminthosporium turcicum, to hygromycin B resistance. Small GTPases Cdc42 and Rac1, the regulators of actin cytoskeleton in eukaryotes were isolated from S. bovinus. Sbcdc42 and Sbrac1, are both expressed in vegetative and in the symbiotic hyphae of S. bovinus . Using IIF microscopy, Cdc42 and actin were co-localized at the tips of vegetative hyphae and were visualized in association with the plasma membrane in swollen cells typical to the symbiotic hyphae. These results suggest that the small GTPases Cdc42 may play a significant role in the polarized growth of S. bovinus hyphae and regulate fungal morphogenesis during ectomycorrhiza formation through reorganization of the actin cytoskeleton. The functional equality of Cdc42 was tested in yeast complementation experiments using a Saccharomyces cerevisiae temperature sensitive mutant, cdc42-1ts. The genomic clone of CDC42 was isolated from S. bovinus genomic DNA via specific primers for Cdc42. The analogous S. cerevisiae cdc42 mutations, dominant active G12V and dominant negative D118A, were generated in the Sbcdc42 gene by in-vitro mutagenesis. The ectomycorrhizal fungi, S. bovinus, P. involutus and H. cylindroporum were transformed using ATMT and phleomycin as a selectable marker. PCR screeing suggested that the T-DNA was inserted in all the three fungal genomes but the fate of integration could not be proved by Southern blot analysis. An alternative Agrobacterium strain, AGL-1 and selection marker, hygromycin was used to transform our model fungus S. bovinus. PCR and Southern analysis suggested an improved efficiency of transformation. All the transformed fungal colonies selected for hygromycin gave positives in PCR and the Southerns showed multiple or single copy T-DNA integrations into the S. bovinus genome. Using the same Agrobacterium strain and the selectable marker, a maize pathogen, H. turcicum was also subjected to ATMT. The H. turcicum transformation data suggested the single copy T-DNA integrations into the genome of the screened transformants that further confirms wider applicability of the ATMT. The plasmids carrying the wild-type (pHGCDC42) and the mutated Sbcdc42 alleles (pHGGV; pHGDA) under Agaricus bisporus gpd promoter were constructed in an A. tumefaciens vector. ATMT was used to transform S. bovinus with the plasmids carrying the wild-type and mutated Sbcdc42 alleles. The isolation of Sbcdc42 and Sbrac1 genes and some other functionally related genes from ectomycorrhizal fungus, S. bovinus will form the basis of future work to resolve the signalling pathway leading to ectomycorrhizal symbiosis. The development of ATMT system will be a valuable tool in analysing the exact function of signalling pathway components in ectomycorrhizal symbiosis or in plant pathogenic interactions. The transformation frequency and broad applicability along with the simplicity of T-DNA integration make Agrobacterium a valuable, new and a powerfull tool for targeted and insertional mutagenesis in these plant associated fungi. The developed ATMT systems should therefore make it possible to generate large number of transformants with tagged genes which could then be screened for their specific roles in symbiosis and pathogenecity, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fungi of the genus Aspergillus are widespread in the environment. Some Aspergillus species, most commonly Aspergillus fumigatus, may lead to a variety of allergic reactions and life-threatening systemic infections in humans. Invasive aspergillosis occurs primarily in patients with severe immunodeficiency, and has dramatically increased in recent years. There are several factors at play that contribute to aspergillosis, including both fungus and host-related factors such as strain virulence and host pulmonary structure/immune status, respectively. The environmental tenacity of Aspergilllus, its dominance in diverse microbial communities/habitats, and its ability to navigate the ecophysiological and biophysical challenges of host infection are attributable, in large part, to a robust stress-tolerance biology and exceptional capacity to generate cell-available energy. Aspects of its stress metabolism, ecology, interactions with diverse animal hosts, clinical presentations and treatment regimens have been well-studied over the past years. Here, we synthesize these findings in relation to the way in which some Aspergillus species have become successful opportunistic pathogens of human- and other animal hosts. We focus on the biophysical capabilities of Aspergillus pathogens, key aspects of their ecophysiology and the flexibility to undergo a sexual cycle or form cryptic species. Additionally, recent advances in diagnosis of the disease are discussed as well as implications in relation to questions that have yet to be resolved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emergence of new fungal pathogens, either of plants or animals, and the increasing number of reported cases of resistant human pathogenic strains to the available antifungal drugs reinforces the need for better understanding the biology of filamentous fungi. Conventional drugs target components of the fungal membrane or cell wall, therefore identifying novel intracellular targets, yet unique to fungi, is a global priority.(...)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conidia of the insect pathogenic fungus, Metarhizium anisopliae play an important role in pathogenicity because they are the infective propagules that adhere to the surface of the insect, then germinate and give rise to hyphal penetration of the insect cuticle. Conidia are produced in the final stages of insect infection as the mycelia emerge from the insect cadaver. The genes associated with conidiation have not yet been studied in this fiingus. hi this study we used the PCR-based technique, suppression subtractive hybridization (SSH) to selectively amplify conidial-associated genes in M. anisopliae. We then identified the presence of these differentially expressed genes using the National Center for Biotechnology Information database. One of the transcripts encoded an extracellular subtilisin-like protease, Prl, which plays a fundamental role in cuticular protein degradation. Analysis of the patterns of gene expression of the transcripts using RT-PCR indicated that conidial-associated cDNAs are expressed during the development of the mature conidium. RT-PCR analysis was also performed to examine in vivo expression of Prl during infection of waxworm larvae {Galleria mellonelld). Results showed expression of Prl as mycelia emerge and produce conidia on the surface of the cadaver. It is well documented that Prl is produced during the initial stages of transcuticular penetration by M. anisopliae. We suggest that upregulation of Prl is part of the mechanism by which reverse (from inside to the outside of the host) transcuticular penetration of the insect cuticle allows subsequent conidiation on the cadaver.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strain improvement of the insect pathogenic fungus Metarhizium anisopUae is necessary to increase its virulence towards agricultural pests and thus improve its commercial efficacy. Nevertheless, the release of genetically modified conidia in crop fields may negatively affect the ecosystem. Controlling conidiation is a potential means of limiting the release of engineered strains since conidia are the infective propagules and the means of dispersal. The purpose of this study was to research the colony development of M. anisopUae to identify potential targets for genetic manipulation to control conidiation. Following Agrobacterium tumefaciem insertional mutagenesis, phenotypic mutants were characterized using Y-shaped adaptor dependent extension PCR. Four of 1 8 colony development recombinants had T-DNA flanking sequences with high homology to genes encoding known signaling pathway proteins that regulate pathogenesis and/or asexual development in filamentous fungi. Conidial density counts and insect bioassays suggested that a Serine/Threonine protein kinase COTl homolog is not essential for conidiation or virulence. Furthermore, a choline kinase homolog is important for conidiation, but not virulence. Finally, the regulator of G protein signaling CAG8 and a NADPH oxidase NoxA homolog are necessary for conidiation and virulence. These genes are candidates for further investigation into the regulatory pathways controlling conidiation to yield insight into promising gene targets for biocontrol strain improvement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Powdery mildews are phytopathogens whose growth and reproduction are entirely dependent on living plant cells. The molecular basis of this life-style, obligate biotrophy, remains unknown. We present the genome analysis of barley powdery mildew, Blumeria graminis f.sp. hordei (Blumeria), as well as a comparison with the analysis of two powdery mildews pathogenic on dicotyledonous plants. These genomes display massive retrotransposon proliferation, genome-size expansion, and gene losses. The missing genes encode enzymes of primary and secondary metabolism, carbohydrate-active enzymes, and transporters, probably reflecting their redundancy in an exclusively biotrophic life-style. Among the 248 candidate effectors of pathogenesis identified in the Blumeria genome, very few (less than 10) define a core set conserved in all three mildews, suggesting thatmost effectors represent species-specific adaptations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some—including the infamous ergot alkaloids—have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses.