940 resultados para Oxides, Ruthenium, Tantalum, Fourier Transform Infrared Spectroscopy (FTIR)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of silicon film samples were prepared by plasma enhanced chemical vapor deposition (PECVD) near the threshold from amorphous to nanocrystalline state by adjusting the plasma parameters and properly increasing the reactions between the hydrogen plasma and the growing surface. The microstucture of the films was studied by micro-Raman and Fourier transform infrared (FTIR) spectroscopy. The influences of the hydrogen dilution ratio of silane (R-H = [H-2]/[SiH4]) and the substrate temperature (T-s) on the microstructural and photoelectronic properties of silicon films were investigated in detail. With the increase of RH from 10 to 100, a notable improvement in the medium-range order (MRO) of the films was observed, and then the phase transition from amorphous to nanocrystalline phase occurred, which lead to the formation of diatomic hydrogen complex, H-2* and their congeries. With the increase of T-s from 150 to 275 degreesC, both the short-range order and the medium range order of the silicon films are obviously improved. The photoconductivity spectra and the light induced changes of the films show that the diphasic nc-Si/a-Si:H films with fine medium-range order present a broader light spectral response range in the longer wavelength and a lower degradation upon illumination than conventional a-Si:H films. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tungsten wires were introduced into a plasma-enhanced chemical vapor deposition (PECVD) system as a catalyzer: we name this technique 'hot-wire-assisted PECVD' (HW-PECVD). Under constant deposition pressure (p(g)), gas flow ratio and catalyzer position, the effects of the hot wire temperature (T-f) on the structural properties of the poly-Si films have been characterized by X-ray diffraction (XRD), Raman scattering and Fourier-transform infrared (FTIR) spectroscopy. Compared with conventional PECVD, the grain size, crystalline volume fraction (X-e) and deposition rate were all enhanced when a high T-f was used. The best poly-Si film exhibits a preferential (220) orientation, with a full width at half-maximum (FWHM) of 0.2 degrees. The Si-Si TO peak of the Raman scattering spectrum is located at 519.8 cm(-1) with a FWHM of 7.1 cm(-1). The X-c is 0.93. These improvements are mainly the result of promotion of the dissociation of SiH4 and an increase in the atomic H concentration in the gas phase. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen behavior in unintentionally doped GaN epilayers on sapphire substrates grown by NH3-MBE is investigated. Firstly, we find by using nuclear reaction analysis (NRA) that with increasing hydrogen concentration the background electron concentration increases, which suggests that there exists a hydrogen-related donor in undoped GaN, Secondly, Fourier transform infrared (FTIR) absorption and X-ray photoelectron spectroscopy (XPS) reveal Further that hydrogen atom is bound to nitrogen atom in GaN with a local vibrational mode at about 3211 cm(-1) Hence, it is presumed that the hydrogen-related complex Ga. . .H-N is a hydrogen-related donor candidate partly responsible for high n-type background commonly observed in GaN films. Finally, Raman spectroscopy results of the epilayers show that ill addition to the expected compressive biaxial strain, in some cases GaN films suffer from serious tensile biaxial strain. This anomalous behavior has been well interpreted in terms of interstitial hydrogen lattice dilation. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper reports the biosorption of uranium onto chemically modified yeast cells, Rhodotorula glutinis, in order to study the role played by various functional groups in the cell wall. Esterification of the carboxyl groups and methylation of the amino groups present in the cells were carried out by methanol and formaldehyde treatment, respectively. The uranium sorption capacity increased 31% for the methanol-treated biomass and 11% for the formaldehyde-treated biomass at an initial uranium concentration of 140 mg/L The enhancement of uranium sorption capacity was investigated by Fourier transform infrared (FTIR) spectroscopy analysis, with amino and carboxyl groups were determined to be the important functional groups involved in uranium binding. The biosorption isotherms of uranium onto the raw and chemically modified biomass were also investigated with varying uranium concentrations. Langmuir and Freundlich models were well able to explain the sorption equilibrium data with satisfactory correlation coefficients higher than 0.9. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural stability of C-60 films under the bombardment of 1.95 GeV Kr ions is investigated. The irradiated C-60 films were analyzed by Fourier Transform Infrared (FTIR) spectroscopy and Raman scattering technique. The analytical results indicate that the irradiation induced a decrease of icosahedral symmetry of C-60 molecule and damage of C-60 films; different vibration modes of C-60 molecule have different irradiation sensitivities; the mean efficient damage radius obtained from experimental data is about 1.47 nm, which is in good agreement with thermal spike model prediction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ethylenediamine trimolybdate (ENTMo) can show unusually photochromic and thermochromic properties and there exists in the difference of chromic mechanisms, which has been proved in our previous work [I]. In this paper, X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) and laser Raman spectroscopy (LRS) of the colored samples are characterized and analyzed in detail. The crystal structure, the inorganic skeleton and the microenvironment of center ions of the colored samples do not substantively change except distortion. The color difference of the photochromic and the thermochromic samples is discussed and that the difference of reduction sites result in their different chromic mechanisms is suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Langmuir-Blodgett (LB) films of octadecylammonium octadecanoate (C(18)H(37)j7NH(3)(+)C(17)H(35)COO(-),ODASA) and octadecylammonium octadecanoate-d(35) (C18H37+NH3+C17D35COO-, ODASA-d(53)) were prepared and their thermal behaviors were investigated by variable-temperature Fourier transform infrared transmission spectroscopy. It was found that the two hydrocarbon chains of ODASA molecule in LB films are highly ordered while that protonated (H) chain in ODASA-d(35) is partially disordered with some gauche conformers introduced at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of dysprosium complex doped xerogels with the same first ligand (acac = acetylacetone) and different neutral ligands were synthesized in situ via a sol-gel process. The Fourier transform infrared (FTIR) spectra, diffuse reflectance (DR) spectra, and near-infrared (NIR) luminescent properties of dysprosium complexes and dysprosium complex doped xerogels are described in detail. The results reveal that the dysprosium complex is successfully synthesized in situ in the corresponding xerogel. Excitation at the maximum absorption wavelength of the ligands resulted in the characteristic NIR luminescence of the Dy3+ ion, which contributes to the energy transfer from the ligands to the central Dy3+ ion in both the dysprosium complexes and xerogels via an antenna effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, monodisperse spherical zirconia (ZrO2) particles with a narrow size distribution were prepared by the controlled hydrolysis of zirconium butoxide in ethanol, followed by heat treatment in air at low temperature from 300 to 500 degrees C. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric and differential thermal analysis (TG/DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra, kinetic decay, and electron paramagnetic resonance were used to characterize the samples. The experimental results indicate that the annealed ZrO2 samples exhibit broad, intense visible photoluminescence. The annealing temperature is indispensable for the luminescence of the obtained ZrO2 particles. The emission colors of the ZrO2 samples can be tuned from blue to nearly white to dark orange by varying the annealing temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gd2MoO6:Eu3+ nanofibers and nanobelts have been prepared by a combination method of the sol-gel process and electrospinning. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy, photoluminescence, and low voltage cathodoluminescence as well as kinetic decays were used to characterize the resulting samples. The results of XRD and FTIR indicate that the Gd2MoO6:Eu3+ samples have crystallized at 600 degrees C with the monoclinic (alpha) structure. The SEM and TEM results indicate that the as-formed precursor fibers and belts are uniform and that the as-prepared nanofibers and nanobelts consist of nanoparticles. Gd2MoO6:Eu3+ phosphors show their strong characteristic emission under UV excitation (353 nm) and low voltage electron-beam excitation (3 kV), making the materials have potential applications in fluorescent lamps and field-emission displays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface structure of the iron oxide nanoparticles obtained by the co-precipitation method has been investigated, and a thin layer of alpha-FeOOH absorbed on surface of the nanoparticle is confirmed by analyses of Fourier transform infrared (FTIR), X-ray photoelectron spectra (XPS) and surface photovoltage spectroscopy (SPS). After annealed at 400 degrees C, the alpha-FeOOH can be converted to gamma-Fe2O3. The simple-annealed procedure resulted in the formation of Fe3O4@gamma-Fe2O3 core/shell structure with improved stability and a higher magnetic saturation value, and also the simple method can be used to obtain core/shell structure in other similar system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Order-disorder transition (ODT) behavior in eicosylated polyethyleneimine (PEI20C) comblike polymer obtained by grafting n-eicosyl group on polyethyleneimine backbone was systematically investigated by the combination of differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), Fourier transform infrared (FTIR) spectroscopy as well as solid-state high resolution nuclear magnetic resonance (NMR) spectroscopy. DSC investigations showed two obvious transitions, assigned to the transitions (1) from orthorhombic to hexagonal and (2) from hexagonal to amorphous phase, respectively. These transitions are induced by the variations of alkyl side chain conformation and packing structure with temperature changing, which consequently lead to the destruction of original phase equilibrium. The ODT behavior can also be confirmed by spectroscopic methods like WAXD, FTIR and NMR. The ordered structure and the transition behavior of the alkyl side chains confined by the PEI backbone are obviously different from those of pristine normal alkanes. The transition mechanism of ODT and the origin of the phase transition behavior in PEI20C comblike polymer were discussed in detail in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the electrostatic attraction Keggin-type polyoxometalate H4SiW12O40 (SiW12) and small molecule 4-aminobenzo-15-crown-5 ether (4-AB15C5) were alternately deposited on poly (allylamine hydrochloride) (PAH)-derived indium tin oxide (ITO) substrate through a layer-by-layer (LBL) self-assembly, forming a supramolecular multilayer film (film-A). SiW12 was also deposited on a glassy carbon electrode (GCE) derived by 4-AB15C5 via covalent bonding in 0.1 M NaCl aqueous solution and formed a composite monolayer film (film-B). UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared (FTIR) spectroscopy measurements demonstrated that the interactions between SiW12 and 4-AB15C5 in both two film electrodes were the same and caused by the bridging action of oxonium ions. But, the nanostructure in the two film electrodes was different. 4-AB15C5 in film-A was oriented horizontally to ITO substrate, however, that in film-B was oriented vertically to GCE. Namely film-A corresponded to a layer structure, and film-B corresponded to an intercalation structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer-clay nanocomposite (PCN) materials were prepared by intercalation of an alkyl-ammonium ion spacing/coupling agent and a polymer between the planar layers of a swellable-layered material, such as montmorillonite (MMT). The nanocomposite lithium polymer electrolytes comprising such PCN materials and/or a dielectric solution (propylene carbonate) were prepared and discussed. The chemical composition of the nanocomposite materials was determined with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy, which revealed that the alkyl-ammonium ion successfully intercalated the layer of MMT clay, and thus copolymer poly(vinylidene fluoride-hexafluoropropylene) entered the galleries of montmorillonite clay. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) were used to investigate the electrochemical properties of the lithium polymer electrolyte. Equivalent circuits were proposed to fit the EIS data successfully, and the significant contribution from MMT was thus identified. The resulting polymer electrolytes show high ionic conductivity up to 10(-3) S cm(-1) after felling with propylene carbonate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrospun poly (vinyl alcohol) (PVA) nanofibers mat was collected on indium tin oxide (ITO) substrate. Heat crosslinked nanofibers mat became water-insoluble and firmly fixed on ITO substrate even in water. Oppositely charged poly (allylamine hydrochloride) (PAH) and Dawson-type polyoxometalate (POM), Na6P2Mo18O62 (P2Mo18), were alternately assembled on PVA nanofibers-coated ITO substrate to construct multilayer film through an electrostatic layer-by-layer (LBL) technique. The scanning electron microscope (SEM) images showed that P2Mo18 multilayer film was selectively deposited on PVA nanofibers while the unoccupied space by nanofibers on bare ITO was acted as substrate at the same time because the electrospun nanofibers have larger surface area and surface energy than the flat substrate. The cyclic voltammograms current responses of the P2Mo18 multilayer film on PVA/ITO electrode showed three well-defined redox couples of P2Mo18, but very small because P2Mo18 multilayer film was selectively deposited on PVA nanofibers with poor conductivity. In addition, the photochromic behavior of P2Mo18 multilayer film on PVA/ITO was investigated through UV-vis spectra and electron spin resonance (ESR). Fourier-transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) proved that the charge-transfer complex was formed between PAH and P2Mo18 after UV irradiation.