935 resultados para OXIDE SYNTHASE ACTIVITY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nitric oxide synthase (NOS) activity in the haemocytes of shrimps Fenneropenaeus chinensis (Osbeck) and Marsupenaeus japonicus (Bate) was Studied after white spot syndrome virus (WSSV) infection to determine its characteristics in response to virus infection. First, the NOS activity in haemocytes of shrimps was determined by the means of NBT reduction and changes in cell conformation. And the variations of NOS activity in shrimps after challenge with WSSV intramuscularly were evaluated through the analysis Of L-citrulline and total nitrite/nitrate (both as NO derivates) concentrations. The result showed that NOS activity in the haemocytes of F chinensis increased slightly from 0 to 12 h postchallenge, indicated by the variations Of L-Citrulline (from 11.15 +/- 0.10 to 12.08 +/- 0.64 mu M) and total nitrite/nitrate concentrations (from 10.45 +/- 0.65 to 12.67 +/- 0.52 mu M). Then it decreased sharply till the end of the experiment (84 h postchallenge), the concentrations Of L-Citrulline and total nitrite/nitrate at 84 It were 1.58 +/- 0.24 and 2.69 +/- 0.70 mu M, respectively. The LPS-stimulated NOS activity kept constant during the experiment. However, in M. japonicus, the NOS activity kept increasing during the first 72 It postchallenge, the concentrations Of L-Citrulline and total nitrite/nitrate increased from 7.82 +/- 0.77 at 0 h to 10.79 +/- 0.50 mu M at 72 h, and from 8.98 +/- 0.43 at 0 h to 11.20 +/- 0.37 mu M at 72 h, respectively. Then it decreased till the end of the experiment (216 h postchallenge), and the concentrations of L-Citrulline and total nitrite/nitrate at 216 h were 5.66 +/- 0.27 and 4.68 +/- 0.16 mu M, respectively. More importantly, an apparent increase of I-PS-stimulated NOS activity was observed in M japonicus at 48 h postchallenge, which was about 4 times higher than that in the control group of health shrimps. In correspondence with the difference of NOS activity between the two species of shrimps, the Cumulative mortalities of the shrimps were also different. All shrimps of F. chinensis in the mortality experiment died in 66 h, much more quickly than M. japonicus, Whose accumulative mortality reached 100% after 240 h. Data here reported let us hypothesize that NOS activity in the haemocytes of shrimps F chinensis and M. japonicus responses to WSSV infection differently, and this might be one of the reasons for the different susceptibility of F chinensis and M. japonicus to WSSV infection. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: Tetrahydrobiopterin (BH4) is an essential cofactor for endothelial nitric oxide synthase (eNOS) activity. BH4 levels are regulated by de novo biosynthesis; the rate-limiting enzyme is GTP cyclohydrolase I (GTPCH). BH4 activates and promotes homodimerisation of purified eNOS protein, but the intracellular mechanisms underlying BH4-mediated eNOS regulation in endothelial cells remain less clear. We aimed to investigate the role of BH4 levels in intracellular eNOS regulation, by targeting the BH4 synthetic pathway as a novel strategy to modulate intracellular BH4 levels. Methods: We constructed a recombinant adenovirus, AdGCH, encoding human GTPCH. We infected human endothelial cells with AdGCH, investigated the changes in intracellular biopterin levels, and determined the effects on eNOS enzymatic activity, protein levels and dimerisation. Results: GTPCH gene transfer in EAhy926 endothelial cells increased BH4 >10-fold compared with controls (cells alone or control adenovirus infection), and greatly enhanced NO production in a dose-dependent, eNOS-specific manner. We found that eNOS was principally monomeric in control cells, whereas GTPCH gene transfer resulted in a striking increase in eNOS homodimerisation. Furthermore, the total amounts of both native eNOS protein and a recombinant eNOS–GFP fusion protein were significantly increased following GTPCH gene transfer. Conclusions: These findings suggest that GTPCH gene transfer is a valid approach to increase BH4 levels in human endothelial cells, and provide new evidence for the relative importance of different mechanisms underlying BH4-mediated eNOS regulation in intact human endothelial cells. Additionally, these observations suggest that GTPCH may be a rational target to augment endothelial BH4 and normalise eNOS activity in endothelial dysfunction states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Laboratory studies have been used to identify nitric oxide as a notable mediator in neuronal death after acute brain injury. To our knowledge, this has not previously been confirmed with in vivo study in humans. Our purpose was to seek in vivo evidence for the induction of nitric oxide synthase (NOS) in human acute brain injury by using proton MR spectroscopy.

METHODS: In vitro proton MR spectra were obtained in neural extracts from 30 human cadavers, and in vivo spectra were obtained in 20 patients with acute brain injury and in a similar number of control subjects.

RESULTS: We identified a unique peak at 3.15 ppm by using in vivo proton MR spectroscopy in eight of 20 patients with acute brain injury but not in 20 healthy volunteers (P < .002). On the basis of in vitro data, we have tentatively assigned this peak to citrulline, a NOS by-product.

CONCLUSION:
To our knowledge, our findings suggest, for the first time, that excitotoxicity may occur in human acute brain injury. Confirmation with the acquisition of spectra in very early acute cerebral injury would provide a rationale for the use of neuroprotective agents in these conditions, as well as a new noninvasive method for quantification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although insects lack the adaptive immune response of the mammalians, they manifest effective innate immune responses, which include both cellular and Immoral components. Cellular responses are mediated by hemocytes, and Immoral responses include the activation of proteolytic cascades that initiate many events, including NO production. In mammals, nitric oxide synthases (NOSs) are also present in the endothelium, the brain, the adrenal glands, and the platelets. Studies on the distribution of NO-producing systems in invertebrates have revealed functional similarities between NOS in this group and vertebrates. We attempted to localize NOS activity in tissues of naive (UIL), yeast-injected (YIL), and saline-injected (SIL) larvae of the blowfly Chrysomya megacephala, using the NADPH diaphorase technique. Our findings revealed similar levels of NOS activity in muscle, fat body, Malpighian tubule, gut, and brain, suggesting that NO synthesis may not be involved in the immune response of these larval systems. These results were compared to many studies that recorded the involvement of NO in various physiological functions of insects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Conventional harvesting of saphenous vein used for coronary artery bypass surgery induces a vasospasm that is overcome by high-pressure distension. Saphenous vein harvested with its cushion of perivascular tissue by a "no touch" technique does not undergo vasospasm and distension is not required, leading to an improved graft patency. The aim of this study is to investigate the effect of surgical damage and high-pressure distension on endothelial integrity and endothelial nitric oxide synthase expression and activity in saphenous vein harvested with and without perivascular tissue. METHODS: Saphenous veins from patients (n = 26) undergoing coronary artery bypass surgery were prepared with and without perivascular tissue. We analyzed the effect of 300 mm Hg distension on morphology and endothelial nitric oxide synthase/nitric oxide synthase activity using a combination of immunohistochemistry, Western blot analysis, reverse transcriptase polymerase chain reaction, and enzyme assay in distended (with and without perivascular tissue) compared with nondistended (with and without perivascular tissue) segments. RESULTS: Distension induced substantial damage to the luminal endothelium (assessed by CD31 staining) and vessel wall. Endothelial nitric oxide synthase expression and activity were significantly reduced by high-pressure distension and removal of, or damage to, perivascular tissue. The effect of distension was significantly less for those with perivascular tissue than for those without perivascular tissue in most cases. CONCLUSION: The success of the saphenous vein used as a bypass graft is affected by surgical trauma and distension. Veins removed with minimal damage exhibit increased patency rates. We show that retention of perivascular tissue on saphenous vein prepared for coronary artery bypass surgery by the "no touch" technique protects against distension-induced damage, preserves vessel morphology, and maintains endothelial nitric oxide synthase/nitric oxide synthase activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In adult forebrain, nerve growth factor (NGF) influences neuronal maintenance and axon sprouting and is neuroprotective in several injury models through mechanisms that are incompletely understood. Most NGF signaling is thought to occur after internalization and retrograde transport of trkA receptor and be mediated through the nucleus. However, NGF expression in hippocampus is rapidly and sensitively regulated by synaptic activity, suggesting that NGF exerts local effects more dynamically than possible through signaling requiring retrograde transport to distant afferent neurons. Interactions have been reported between NGF and nitric oxide (NO). Because NO affects both neural plasticity and degeneration, and trk receptors can mediate signaling within minutes, we hypothesized that NGF might rapidly modulate NO production. Using in vivo microdialysis we measured conversion of l-[14C]arginine to l-[14C]citrulline as an accurate reflection of NO synthase (NOS) activity in adult rat hippocampus. NGF significantly reduced NOS activity to 61% of basal levels within 20 min of onset of delivery and maintained NOS activity at less than 50% of baseline throughout 3 hr of delivery. This effect did not occur with control protein (cytochrome c) and was not mediated by an effect of NGF on glutamate levels. In addition, simultaneous delivery of NGF prevented significant increases in NOS activity triggered by the glutamate receptor agonists N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Rapid suppression by NGF of basal and glutamate-stimulated NOS activity may regulate neuromodulatory functions of NO or protect neurons from NO toxicity and suggests a novel mechanism for rapidly mediating functions of NGF and other neurotrophins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipophosphoglycan (LPG) glycoconjugates from promastigotes of Leishmania were not able to induce the expression of the cytokine-inducible nitric oxide synthase (iNOS) by the murine macrophage cell line, J774. However, they synergize with interferon gamma to stimulate the macrophages to express high levels of iNOS. This synergistic effect was critically time-dependent. Preincubation of J774 cells with the LPG glycans 4-18 h before stimulation with interferon gamma resulted in a significant reduction in the expression of iNOS mRNA and of NO synthesis, compared with cells preincubated with culture medium alone. The regulatory effect on the induction of iNOS by LPG is located in the LPG phosphoglycan disaccharide backbone. Synthetic fragments of this backbone had a similar regulatory effect on NO synthesis. Further, the production of NO by activated macrophages in the present system was correlated directly with the leishmanicidal capacity of the cells. These data therefore demonstrate that LPG glycoconjugates have a profound effect on the survival of Leishmania parasites through their ability to regulate the expression of iNOS by macrophages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ubiquitous chemical messenger molecule nitric oxide (NO) has been implicated in a diverse range of biological activities including neurotransmission, smooth muscle motility and mediation of nociception. Endogenous synthesis of NO by the neuronal isoform of the nitric oxide synthase gene family has an essential role within the central and peripheral nervous systems in addition to the autonomic innervation of cerebral blood vessels. To investigate the potential role of NO and more specifically the neuronal nitric oxide synthase (nNOS) gene in migraine susceptibility, we investigated two microsatellite repeat variants residing within the 5′ and 3′ regions of the nNOS gene. Population genomic evaluation of the two nNOS repeat variants indicated significant linkage disequilibrium between the two loci. Z-DNA conformational sequence structures within the 5′ region of the nNOS gene have the potential to enhance or repress gene promoter activity. We suggest that genetic analysis of this 5′ repeat variant is the more functional variant expressing gene wide information that could affect endogenous NO synthesis and potentially result in diseased states. However, no association with migraine (with or without aura) was seen in our extensive case-control cohort (n = 579 affected with matched controls), when both the 5′ and 3′ genetic variants were investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Apoptosis is the final destiny of many cells in the body, though this process has been observed in some pathological processes. One of these pathological processes is femoral head non-traumatic osteonecrosis. Among many pro/anti-apoptotic factors, nitric oxide has recently been an area of further interest. Osteocyte apoptosis and its relation to pro-apoptotic action invite further research, and the inducible form of nitric oxide synthase (iNOS)—which produces a high concentration of nitric oxide—has been flagged. The aim of this study was to investigate the effect of hyperbaric oxygen (HBO) and inducible NOS suppressor (Aminoguanidine) in prevention of femoral head osteonecrosis in an experimental model of osteonecrosis in spontaneous hypertensive rats (SHRs). Methods: After animal ethic approval 34 SHR rats were divided into four groups. Ten rats were allocated to the control group without any treatment, and eight rats were allocated to three treatment groups namely: HBO, Aminoguanidine (AMG), and the combination of HBO and AMG treatments (HBO+AMG). The HBO group received 250 kPa of oxygen via hyperbaric chamber for 30 days started at their 5th week of life; the AMG group received 1mg/ml of AMG in drinking water from the fifth week till the 17th week of life; and the last group received a combination of these treatments. Rats were sacrificed at the end of the 17th week of life and both femurs were analysed for evidence of osteonecrosis using Micro CT scan and H&E staining. Also, osteocyte apoptosis and the presence of two different forms of NOS (inducible (iNOS) and endothelial (eNOS)) were analysed by immunostaining and apoptosis staining (Hoechst and TUNEL). Results: Bone morphology of metaphyseal and epiphyseal area of all rats were investigated and analysed. Micro CT findings revealed significantly higher mean fractional trabecular bone volume (FBV) of metaphyseal area in untreated SHRs compared with all other treatments (HBO, P<0.05, HBO+AMG, P<0.005, and AMG P<0.001). Bone surface to volume ratio also significantly increased with HBO+AMG and AMG treatments when compared with the control group (18.7 Vs 20.8, P<0.05, and 18.7 Vs 21.1, P<0.05). Epiphyseal mean FBV did not change significantly among groups. In the metaphyseal area, trabecular thickness and numbers significantly decreased with AMG treatment, while trabecular separation significantly increased with both AMG and HBO+AMG treatment. Histological ratio of no ossification and osteonecrosis was 37.5%, 43.7%, 18.7% and 6.2% of control, HBO, HBO+AMG and AMG groups respectively with only significant difference observed between HBO and AMG treatment (P<0.01). High concentration of iNOS was observed in the region of osteonecrosis while there was no evidence of eNOS activity around that region. In comparison with the control group, the ratio of osteocyte apoptosis significantly reduced in AMG treatment (P<0.005). We also observed significantly fewer apoptotic osteocytes in AMG group comparing with HBO treatment (P<0.05). Conclusion: None of our treatments prevents osteonecrosis at the histological or micro CT scan level. High concentration of iNOS in the region of osteonecrosis and significant reduction of osteocyte apoptosis with AMG treatment were supportive of iNOS modulating osteocyte apoptosis in SHRs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large intestinal obstruction (LIO) in farm animals can cause a ischaemic necrosis of intestinal tissue, eventually leading to death. The roles of endothelin-1 (ET-1) and nitric oxide (NO) are not well understood in the process of LIO, but evidence suggests that endothelial-derived mediators may participate. In the present study, ET-1 concentration and total nitric oxide synthase (NOS) activity were measured in heart, liver, pancreas, lung and kidney in a model of LIO in sheep. Our data demonstrated that ET-1 concentration and NOS activity were altered, with significant increases of ET-1 in heart, lung and kidney and of NOS activity in pancreas and kidney, but a marked decline of NOS activity in liver (p<0.05). It is postulated that these alterations in NOS activity and ET-1 concentration may contribute to the progressive loss of organ function, and finally lead to death in LIO in sheep.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the effects of Ginsenoside R-e on human sperm motility in fertile and asthenozoospermic infertile individuals in vitro and the mechanism by which the Ginsenosides play their roles. The semen samples were obtained from 10 fertile volunteers and 10 asthenozoospermic infertile patients. Spermatozoa were separated by Percoll and incubated with 0, 1, 10 or 100 mu M of Ginsenoside R-e. Total sperm motility and progressive motility were measured by computer-aided sperm analyzer (CASA). Nitric oxide synthase (NOS) activity was determined by the H-3-arginine to H-3-citrulline conversion assay, and the NOS protein was examined by the Western blot analysis. The production of sperm nitric oxide (NO) was detected using the Griess reaction. The results showed that Ginsenoside R-e significantly enhanced both fertile and infertile sperm motility, NOS activity and NO production in a concentration-dependent manner. Sodium nitroprusside (SNP, 100 nM), a NO donor, mimicked the effects of Ginsenoside R-e. And pretreatment with a NOS inhibitor N-omega-Nitro-L-arginine methyl ester (L-NAME, 100 mu M) or a NO scavenger N-Acetyl-L-cysteine (LNAC, 1 mM) completely blocked the effects of Ginsenoside R-e. Data suggested that Ginsenoside R-e is beneficial to sperm motility, and that induction of NOS to increase NO production may be involved in this benefit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes is associated with oxidative stress and increased levels of inflammatory cytokines. The aim of the study was to assess the effects of inflammatory cytokines and oxidative stress associated with raised glucose levels on inducible nitric oxide synthase (iNOS) promoter activity in intestinal epithelial cells. High glucose (25 mmol/l) conditions reduced glutathione (GSH) levels in the human intestinal epithelial cell line, DLD-1. Addition of the antioxidant alpha-lipoic acid resulted in the restoration of GSH levels to normal. Upregulation of basal iNOS promoter activity was observed when cells were incubated in high glucose alone. This effect was significantly reduced by the addition of the antioxidant, alpha-lipoic acid and completely blocked with inhibition of NFkappa B activity. Cytokine stimulation [interleukin-1 beta, tumor necrosis factor-alpha, interferon-gamma] induced iNOS promoter activity in all conditions and this was accompanied by an increase in nitric oxide (NO) production. Inhibition of NFkappa-B activity decreased but did not completely inhibit cytokine-induced iNOS promoter activity and subsequent NO production. In conclusion, high glucose-induced iNOS promoter activity is mediated in part through intracellular GSH and NFkappa-B.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The G894T endothelial nitric oxide synthase (eNOS) polymorphism results in a Glu to Asp substitution at position 298. This position is located externally on the protein and as the regulation of eNOS is dependent on its subcellular localization and interaction with modulatory proteins, we aimed to address whether the substitution of Asp at 298 had any effect on these mechanisms. Initially, we developed a novel method to accurately determine molar quantities of each variant by expressing them as green fluorescent protein (GFP) fusion proteins and using recombinant adenoviruses to facilitate transient infection of human microvascular endothelial cells. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting of eNOS298Asp revealed a 135-kDa proteolytic fragment which was not present with eNOS298Glu. This proteolysis was prevented by using LDS buffer confirming that this differential cleavage is an artefact of sample preparation and unlikely to occur intracellularly. Nitric oxide was measured following stimulation with calcium ionophore or oestrogen in the presence of varying sepiapterin concentrations. GFP fluorescence was used to quantify the amount of fusion protein and calculate intracellular specific activity. There was no significant difference in intracellular specific activity between Glu298 and Asp298 eNOS in response to calcium ionophore or oestrogen. Tetrahydrobiopterin supplementation increased eNOS activity of both variants in an identical manner. The presence of the GFP also facilitated the visualization of the variants by confocal microscopy and demonstrated that both localized to the plasma membrane and the Golgi. These findings demonstrate that the Asp substitution at 298 does not have a major effect in modulating eNOS activity in vivo.