226 resultados para Nichos neurogênicos


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fact that the adult brain is able to produce new neurons or glial cells from neural stem cells (NSC) became one of the most interesting and challenging fields of research in neuroscience. Endogenous adult neurogenesis occurs in two main regions of the brain: the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) in the dentate gyrus. Brain injury may be accompanied by increased neurogenesis, although neuroinflammation promotes the activation of microglial cells that can be detrimental to the neurogenic process. Nitric oxide (NO) is one of the factors released by microglia that can be proneurogenic. The mechanism by which NO promotes the proliferation of NSCs has been intensively studied. However, little is known about the role of NO in migration, survival and differentiation of the newborn cells. The aim of this work was to investigate the role of NO from inflammatory origin in proliferation, migration, differentiation and survival of NSCs from the dentate gyrus in a mouse model of status epilepticus. We also assessed neuroinflammation in the same injury model. Our work showed that NO increased proliferation of the early-born cells after seizures, but is detrimental for their survival. NO also increased migration of neuroblasts. Moreover, NO was important to maintain long-term neuroinflammation. Taken together, these results show that NO may be a good target to promote proliferation and migration of NSCs following seizures, but compromises survival of early-born cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese de mestrado, Neurociências, Faculdade de Medicina, Universidade de Lisboa, 2015

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de Mestrado, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2016

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis ( Maestría en Administración de Empresas con Especialidad en Mercadotecnia) U.A.N.L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Doctor en Ciencias con acentuación en Manejo de Vida Silvestre y Desarrollo Sustentable) UANL, 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen basado en el de la publicaci??n

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The niche breadth of the Portunidae and their overlap on the subtidal sediments of Fortaleza bay, Ubatuba (São Paulo) was analyzed. Samples were made monthly from November/1988 to October/1989, inseven areas of the bay using a shrimp fishery boat equipped with two otter-trawls. Each area was characterized based on environmental factors such as depth, temperature, salinity, dissolved oxygen, organic matter and granulometric composition of the sediment. The number of individuais of each species was registered to each area (resource). Levins's standardized measure (BA) and niche percentage were calculated. Five species of swimming crabs were recorded in this study: Callinectes ornatus Ordway, 1863, Arenaeus cribrarius (Lamarck, 1818), Portunus spinimanus Latreille, 1819, Callinectes danae Smith, 1869 and Portunus spinicarpus (Stimpson, 1871). The widest ecological niche occurred to C. ornatus, present in all sampled areas (generalist species). Such fact can be related to high sediment tolerance when it is compared to P. spinimanus (especialist species) which was limited to the areas with coarse granulometric fractions. Highest niche overlap was verified between C. danae and A. cribrarius may be due to greater salinity tolerance of these species. The low occurrence of P. spinicarpus and its reduced niche size in Fortaleza Bay are due to association of this species to cold water currents (ACAS) more evidente in smaler depths during summer months. One future evaluation of the portunid diet can be useful to complement informations about this important aspect of the marine ecology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Reabilitação Oral - FOAR

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dimorphic pathogenic fungus, Paracoccidioides brasiliensis (Pb), is the etiological agent of paracoccidioidomycosis (PCM), the most important systemic mycosis in Latin America. While the yeast phase can be isolated from patients affected by paracoccidioidomycosis, dogs and naturally infected armadillos; several elements related to the ecology of the saprophytic phase of the pathogen, which is responsible for the production of infective propagules, are poorly understood, hampering the adoption of preventive measures. The demonstration of the high incidence of Pb infection in the 9- banded armadillo, Dasypus novemcinctus, has opened new perspectives for the identification of the pathogen’s habitat. At the opening of the armadillos’ burrows, spider webs are commonly found. The objective of this study was to evaluate the presence of Pb in spider webs samples related to the habitat of armadillos. Spider web samples were collected at Lageado Farm, Botucatu/SP and prepared for microscopic, molecular and mycological analyses. Microscopic analysis showed that different fungi were closely attached to spider web samples. Nested-PCR reaction showed positive amplification for Pb in 4 samples, with identity confirmed by amplicon sequencing. Fungal colonies also included members of Aspergillus, Blastobotrys, Penicillium, Candida, and Sporothrix genera, which are related to opportunistic disease and primary infections of great medical importance. In vitro adhesion tests of mycelia and yeast form of Pb to the spider webs were also performed, in order to analyze the possible physical attraction between fungal cells and the spider web protein network. The results showed a clear adherence of fungal particles to spider webs. In the current literature, there are no studies reporting adhesive properties of microorganisms to spider webs... (Complete abstract click electronic access below)