22 resultados para Nanotoxicity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Owing to their unique mechanical, electrical, optical, and thermal properties, carbon nanostructures including carbon nanotubes and graphenes show great promise for advancing the fields of biology and medicine. Many reports have demonstrated the promise of these carbon nanostructures and their hybrid structures (composites with polymers, ceramics, and metal nanoparticles, etc.) for a variety of biomedical areas ranging from biosensing, drug delivery, and diagnostics, to cancer treatment, tissue engineering, and bioterrorism prevention. However, the issue of the safety and toxicity of these carbon nanostructures, which is vital to their use as diagnostic and therapeutic tools in biomedical fields, has not been completely resolved. This paper aims to provide a summary of the features of carbon nanotube and graphene-based materials and current research progress in biomedical applications. We also highlight the current opinions within the scientific community on the toxicity and safety of these carbon structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of cell electronics has led to their integration to medicine either by physically interfacing electronic devices with biological systems or by using electronics for both detection and characterization of biological materials. In this dissertation, an electrical impedance sensor (EIS) was used to measure the electrode surface impedance changes from cell samples of human and environmental toxicity of nanoscale materials in 2D and 3D cell culture models. The impedimetric response of human lung fibroblasts and rainbow trout gill epithelial cells when exposed to various nanomaterials was tested to determine their kinetic effects towards the cells and to demonstrate the biosensor's ability to monitor nanotoxicity in real-time. Further, the EIS allowed rapid, real-time and multi-sample analysis creating a versatile, noninvasive tool that is able to provide quantitative information with respect to alteration in cellular function. We then extended the application of the unique capabilities of the EIS to do real-time analysis of cancer cell response to externally applied alternating electric fields at different intermediate frequencies and low-intensity. Decreases in the growth profiles of the ovarian and breast cancer cells were observed with the application of 200 and 100 kHz, respectively, indicating specific inhibitory effects on dividing cells in culture in contrast to the non-cancerous HUVECs and mammary epithelial cells. We then sought to enhance the effects of the electric field by altering the cancer cell's electronegative membrane properties with HER2 antibody functionalized nanoparticles. An Annexin V/EthD-III assay and zeta potential were performed to determine the cell death mechanism indicating apoptosis and a decrease in zeta potential with the incorporation of the nanoparticles. With more negatively charged HER2-AuNPs attached to the cancer cell membrane, the decrease in membrane potential would thus leave the cells more vulnerable to the detrimental effects of the applied electric field due to the decrease in surface charge. Therefore, by altering the cell membrane potential, one could possibly control the fate of the cell. This whole cell-based biosensor will enhance our understanding of the responsiveness of cancer cells to electric field therapy and demonstrate potential therapeutic opportunities for electric field therapy in the treatment of cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing useof nanomaterials in consumer products and biomedical applications creates the possibilities of intentional/unintentional exposure to humans and the environment. Beyond the physiological limit, the nanomaterialexposure to humans can induce toxicity. It is difficult to define toxicity of nanoparticles on humans as it varies by nanomaterialcomposition, size, surface properties and the target organ/cell line. Traditional tests for nanomaterialtoxicity assessment are mostly based on bulk-colorimetric assays. In many studies, nanomaterials have found to interfere with assay-dye to produce false results and usually require several hours or days to collect results. Therefore, there is a clear need for alternative tools that can provide accurate, rapid, and sensitive measure of initial nanomaterialscreening. Recent advancement in single cell studies has suggested discovering cell properties not found earlier in traditional bulk assays. A complex phenomenon, like nanotoxicity, may become clearer when studied at the single cell level, including with small colonies of cells. Advances in lab-on-a-chip techniques have played a significant role in drug discoveries and biosensor applications, however, rarely explored for nanomaterialtoxicity assessment. We presented such cell-integrated chip-based approach that provided quantitative and rapid response of cellhealth, through electrochemical measurements. Moreover, the novel design of the device presented in this study was capable of capturing and analyzing the cells at a single cell and small cell-population level. We examined the change in exocytosis (i.e. neurotransmitterrelease) properties of a single PC12 cell, when exposed to CuOand TiO2 nanoparticles. We found both nanomaterials to interfere with the cell exocytosis function. We also studied the whole-cell response of a single-cell and a small cell-population simultaneously in real-time for the first time. The presented study can be a reference to the future research in the direction of nanotoxicity assessment to develop miniature, simple, and cost-effective tool for fast, quantitative measurements at high throughput level. The designed lab-on-a-chip device and measurement techniques utilized in the present work can be applied for the assessment of othernanoparticles' toxicity, as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing useof nanomaterials in consumer products and biomedical applications creates the possibilities of intentional/unintentional exposure to humans and the environment. Beyond the physiological limit, the nanomaterialexposure to humans can induce toxicity. It is difficult to define toxicity of nanoparticles on humans as it varies by nanomaterialcomposition, size, surface properties and the target organ/cell line. Traditional tests for nanomaterialtoxicity assessment are mostly based on bulk-colorimetric assays. In many studies, nanomaterials have found to interfere with assay-dye to produce false results and usually require several hours or days to collect results. Therefore, there is a clear need for alternative tools that can provide accurate, rapid, and sensitive measure of initial nanomaterialscreening. Recent advancement in single cell studies has suggested discovering cell properties not found earlier in traditional bulk assays. A complex phenomenon, like nanotoxicity, may become clearer when studied at the single cell level, including with small colonies of cells. Advances in lab-on-a-chip techniques have played a significant role in drug discoveries and biosensor applications, however, rarely explored for nanomaterialtoxicity assessment. We presented such cell-integrated chip-based approach that provided quantitative and rapid response of cellhealth, through electrochemical measurements. Moreover, the novel design of the device presented in this study was capable of capturing and analyzing the cells at a single cell and small cell-population level. We examined the change in exocytosis (i.e. neurotransmitterrelease) properties of a single PC12 cell, when exposed to CuOand TiO2 nanoparticles. We found both nanomaterials to interfere with the cell exocytosis function. We also studied the whole-cell response of a single-cell and a small cell-population simultaneously in real-time for the first time. The presented study can be a reference to the future research in the direction of nanotoxicity assessment to develop miniature, simple, and cost-effective tool for fast, quantitative measurements at high throughput level. The designed lab-on-a-chip device and measurement techniques utilized in the present work can be applied for the assessment of othernanoparticles' toxicity, as well.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of cell electronics has led to their integration to medicine either by physically interfacing electronic devices with biological systems or by using electronics for both detection and characterization of biological materials. In this dissertation, an electrical impedance sensor (EIS) was used to measure the electrode surface impedance changes from cell samples of human and environmental toxicity of nanoscale materials in 2D and 3D cell culture models. The impedimetric response of human lung fibroblasts and rainbow trout gill epithelial cells when exposed to various nanomaterials was tested to determine their kinetic effects towards the cells and to demonstrate the biosensor’s ability to monitor nanotoxicity in real-time. Further, the EIS allowed rapid, real-time and multi-sample analysis creating a versatile, noninvasive tool that is able to provide quantitative information with respect to alteration in cellular function. We then extended the application of the unique capabilities of the EIS to do real-time analysis of cancer cell response to externally applied alternating electric fields at different intermediate frequencies and low-intensity. Decreases in the growth profiles of the ovarian and breast cancer cells were observed with the application of 200 and 100 kHz, respectively, indicating specific inhibitory effects on dividing cells in culture in contrast to the non-cancerous HUVECs and mammary epithelial cells. We then sought to enhance the effects of the electric field by altering the cancer cell’s electronegative membrane properties with HER2 antibody functionalized nanoparticles. An Annexin V/EthD-III assay and zeta potential were performed to determine the cell death mechanism indicating apoptosis and a decrease in zeta potential with the incorporation of the nanoparticles. With more negatively charged HER2-AuNPs attached to the cancer cell membrane, the decrease in membrane potential would thus leave the cells more vulnerable to the detrimental effects of the applied electric field due to the decrease in surface charge. Therefore, by altering the cell membrane potential, one could possibly control the fate of the cell. This whole cell-based biosensor will enhance our understanding of the responsiveness of cancer cells to electric field therapy and demonstrate potential therapeutic opportunities for electric field therapy in the treatment of cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cytotoxicity of carbon nanotubes (CNTs) is a major concern today well before its unusual physicochemical, mechanical, and electrical properties are fully exploited for commercial interests and subsequent mass production leading to greater possibilities for its exposure to humans and the environment. Contradictory reports on cytotoxicity of CNTs often appear in the literature and a mechanistic explanation of the reported toxicity remains obscure. We review here the conflicting results to focus categorically on an array of issues in CNT cytotoxicity. They include dispersion, aggregation status, coating or functionalization and immobilization, cellular uptake or internalization, purity in terms of metal catalyst contaminants, size and size distribution, surface area, surface chemistry and surface reactivity, cell types selected for experimentation as well as bioassay of nanotoxicity itself attesting as an issue in cytotoxicity. Recently a general agreement has emerged towards the potential toxicity of CNTs, although various paradigms explaining the mechanisms of CNT cytotoxicity continue to be elusive in the literature. A lack of synergy among various issues while studying cytotoxicity and most developed paradigms for the mechanism of CNT toxicity is highlighted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We highlight the need for a comprehensive, multi-disciplinary approach for the development of cost-effective water remediation methods. Combining ``chimie douce'' and green chemical principles seems essential for making these technologies economically viable and socially relevant (especially in the developing world). A comprehensive approach to water remediation will take into account issues such as nanotoxicity, chemical yield, cost, and ease of deployment in reactors. By considering technological challenges that lie ahead, we will attempt to identify directions that are likely to make photocatalytic water remediation a more global technology than it currently is. (C) 2013 Elsevier Ltd. All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les nanoparticules (NPs) sont définies comme des particules ayant au moins une dimension comprise entre 1 à 100 nanomètres. Plusieurs études in vitro et in vivo indiquent que les NPs pourraient constituer un risque potentiel pour la santé des personnes les synthétisant ou les manipulant lors de leur incorporation dans d’autres matériaux. La nanotoxicologie est un domaine de recherche émergeant. Les propriétés physico-chimiques particulières des NPs sont responsables d’interférences non spécifiques entre les nanomatériaux et certains des composants des essais in vitro pouvant mener à de faux résultats. L’inhalation a été identifiée comme une voie d’exposition présentant un risque important de toxicité. Dans le cadre de ce projet, nous avons utilisé la lignée de cellules épithéliales alvéolaires humaines, A549. Nous avons étudié chez cette lignée les conséquences de l’exposition aux points quantiques (PQs), NPs d’intérêt pour leurs applications potentielles en médecine (nanovecteur ou nanosonde). La mise au point des conditions expérimentales (interférence entre l’essai LDH et le milieu de culture) a permis de valider les essais de cytotoxicité MTS et LDH en présence des PQs. Nous avons montré que les PQs présentaient une cytotoxicité à court et long terme, et nous avons par la suite étudié un des mécanismes de toxicité potentielle, la mesure du cadmium (Cd2+) libéré des PQs. Nous avons déterminé que la mesure du Cd2+ comportait plusieurs interférences qui invalident cet essai. En conclusion, notre étude a permis d’identifier des interférences qui remettent en question plusieurs conclusions d’études publiées qui n’ont pas vérifié l’existence de telles interférences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To validate the anticancer efficacy of alginate-enclosed, chitosan-conjugated, calcium phosphate, iron-saturated bovine lactoferrin (Fe-bLf) nanocarriers/nanocapsules (NCs) with improved sustained release and ability to induce apoptosis by downregulating survivin, as well as cancer stem cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biomedical application of graphene quantum dots (GQDs) is a new emerging area. However, their safety data are still in scarcity to date. Particularly, the effect of GQDs on the immune system remains unknown. This study aimed to elucidate the interaction of GQDs with macrophages and the underlying mechanisms. Our results showed that GQDs slightly affected the cell viability and membrane integrity of macrophages, whereas GQDs significantly increased reactive oxygen species (ROS) generation and apoptotic and autophagic cell death with an increase in the expression level of Bax, Bad, caspase 3, caspase 9, beclin 1, and LC3-I/II and a decrease in that of Bcl-2. Furthermore, low concentrations of GQDs significantly increased the expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-8, whereas high concentrations of GQDs elicited opposite effects on the cytokines production. SB202190, a selective inhibitor of p38 mitogen-activated protein kinase (MAPK), abolished the cytokine-inducing effect of GQDs in macrophages. Moreover, GQDs significantly increased the phosphorylation of p38 MAPK and p65, and promoted the nuclear translocation of nuclear factor-κB (NF-κB). Taken together, these results show that GQDs induce ROS generation, apoptosis, autophagy, and inflammatory response via p38MAPK and NF-κB mediated signaling pathways in THP-1 activated macrophages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ecotoxicology of nano-TiO2 has been extensively studied in recent years; however, few toxicological investigations have considered the photocatalytic properties of the substance, which can increase its toxicity to aquatic biota. The aim of this work was to evaluate the effects on fish exposed to different nano-TiO2 concentrations and illumination conditions. The interaction of these variables was investigated by observing the survival of the organisms, together with biomarkers of biochemical and genetic alterations. Fish (Piaractus mesopotamicus) were exposed for 96h to 0, 1, 10, and 100mg/L of nano-TiO2, under visible light, and visible light with ultraviolet (UV) light (22.47J/cm2/h). The following biomarkers of oxidative stress were monitored in the liver: concentrations of lipid hydroperoxide and carbonylated protein, and specific activities of superoxide dismutase, catalase, and glutathione S-transferase. Other biomarkers of physiological function were also studied: the specific activities of acid phosphatase and Na,K-ATPase were analyzed in the liver and brain, respectively, and the concentration of metallothionein was measured in the gills. In addition, micronucleus and comet assays were performed with blood as genotoxic biomarkers. Nano-TiO2 caused no mortality under any of the conditions tested, but induced sublethal effects that were influenced by illumination condition. Under both illumination conditions tested, exposure to 100mg/L showed an inhibition of acid phosphatase activity. Under visible light, there was an increase in metallothionein level in fish exposed to 1mg/L of nano-TiO2. Under UV light, protein carbonylation was reduced in groups exposed to 1 and 10mg/L, while nucleus alterations in erythrocytes were higher in fish exposed to 10mg/L. As well as improving the understanding of nano-TiO2 toxicity, the findings demonstrated the importance of considering the experimental conditions in nanoecotoxicological tests. This work provides information for the development of protocols to study substances whose toxicity is affected by illumination conditions. © 2013 Elsevier B.V..

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Engineered nanomaterials have been extensively applied as active materials for technological applications. Since the impact of these nanomaterials on health and environment remains undefined, research on their possible toxic effects has attracted considerable attention. It is known that in humans, for example, the primary site of gold nanoparticles (AuNps) accumulation is the liver. The latter has motivated research regarding the use of AuNps for cancer therapy, since specific organs can be target upon appropriate functionalization of specific nanoparticles. In this study, we investigate the geno and cytotoxicity of two types of AuNps against human hepatocellular carcinoma cells (HepG2) and peripheral blood mononuclear cells (PBMC) from healthy human volunteers. The cells were incubated in the presence of different concentrations of AuNps capped with either sodium citrate or polyamidoamine dendrimers (PAMAM). Our results suggest that both types of AuNps interact with HepG2 cells and PBMC and may exhibit in vitro geno and cytotoxicity even at very low concentrations. In addition, the PBMC were less sensitive to DNA damage toxicity effects than cancer HepG2 cells upon exposure to AuNps. (C) 2012 Elsevier Ireland Ltd. All rights reserved.