991 resultados para Medical Pharmacology


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cellular invasion represents a critical early step in the metastatic cascade, and many proteins have been identified as part of an “invasive signature.” The non-receptor tyrosine kinase Src is commonly upregulated in breast cancers, often in conjunction with overexpression of EGFR. Signaling from this pathway stimulates cell proliferation, migration, and invasion and frequently involves proteins that regulate the cytoskeleton. My data demonstrates that inhibition of Src, using the small-molecule inhibitor dasatinib, impairs cellular migration and invasion. Furthermore, Src inhibition sensitizes the cells to the effects of the chemotherapeutic doxorubicin resulting in dramatic, synergistic inhibition of proliferation with combination treatments. The Src-targeted protein CIP4 (Cdc42-interacting protein 4) associates with curved plasma membranes to scaffold complexes of Cdc42 and N-WASp. In these experiments, I show that CIP4 overexpression correlates with triple-negative biomarker status, cellular migration, and invasion of (breast cancer cells. Inhibition of CIP4 expression significantly decreases migration and invasion. Furthermore, I demonstrate the novel finding that CIP4 localizes to invadopodia, which are finger-like projections of the actin cytoskeleton that are associated with matrix degradation and cellular invasion. Depletion of CIP4 in invasive cells impairs the formation of invadopodia and the degradation of gelatin. Therefore, CIP4 is a critical component of the invasive phenotype acquired by human breast cancer cells. In this body of work, I propose a model in which CIP4 promotes actin polymerization by stabilizing the active conformation of N-WASp. CIP4 and N-WASp are both phosphorylated by Src, implicating this pathway in Src-dependent cytoskeletal rearragement. This represents a novel role for F-BAR proteins in migration and invasion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Breast cancer is the most common malignancy among women in the world. Its 5-year survival rate ranges from 23.4% in patients with stage IV to 98% in stage I disease, highlighting the importance of early detection and diagnosis. 18F-2-Fluoro-2-deoxy-glucose (18F-FDG), using positron emission tomography (PET), is the most common functional imaging tool for breast cancer diagnosis currently. Unfortunately, 18F-FDG-PET has several limitations such as poorly differentiating tumor tissues from inflammatory and normal brain tissues. Therefore, 18F-labeled amino acid-based radiotracers have been reported as an alternative, which is based on the fact that tumor cells uptake and consume more amino acids to sustain their uncontrolled growth. Among those radiotracers, 18F-labeled tyrosine and its derivatives have shown high tumor uptake and great ability to differentiate tumor tissue from inflammatory sites in brain tumors and squamous cell carcinoma. They enter the tumor cells via L-type amino acid transporters (LAT), which were reported to be highly expressed in many cancer cell lines and correlate positively with tumor growth. Nevertheless, the low radiosynthesis yield and demand of an on-site cyclotron limit the use of 18F-labeled tyrosine analogues. In this study, four Technetium-99m (99mTc) labeled tyrosine/ AMT (α-methyl tyrosine)-based radiotracers were successfully synthesized and evaluated for their potentials in breast cancer imaging. In order to radiolabel tyrosine and AMT, the chelators N,N’-ethylene-di-L-cysteine (EC) and 1,4,8,11-tetra-azacyclotetradecane (N4 cyclam) were selected to coordinate 99mTc. These chelators have been reported to provide stable chelation ability with 99mTc. By using the chelator technology, the same target ligand could be labeled with different radioisotopes for various imaging modalities for tumor diagnosis, or for internal radionuclide therapy in future. Based on the in vitro and in vivo evaluation using the rat mammary tumor models, 99mTc-EC-AMT is considered as the most suitable radiotracer for breast cancer imaging overall, however, 99mTc-EC-Tyrosine will be more preferred for differential diagnosis of tumor from inflammation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gemcitabine is a potent nucleoside analogue against solid tumors however drug resistance rapidly emerges. Removal of gemcitabine incorporated in the DNA by repair mechanisms could potentially contribute to resistance in chemo-refractory solid tumors. In this study, we evaluated homologous recombination repair of gemcitabine-stalled replication forks as a potential mechanism contributing to resistance. We also studied the effect of hyperthermia on homologous recombination pathway to explain the previously reported synergy between gemcitabine and hyperthermia. We found that hyperthermia degrades and inhibits localization of Mre11 to gemcitabine-stalled replication forks. Furthermore, gemcitabine-treated cells that were also treated with hyperthermia demonstrate a prolonged passage through late S/ G2 phase of cell cycle in comparison to cells treated with gemcitabine alone. This coincides with inhibition of resolution of γH2AX foci. Our findings also demonstrate that thermal sensitization of human hepatocellular carcinoma cell lines to gemcitabine is mediated through an Mre11-dependent homologous recombination repair pathway. Combination of non-invasive radiofrequency field-induced hyperthermia and gemcitabine was superior to either therapy alone (p

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Drug targeting is an active area of research and nano-scaled drug delivery systems hold tremendous potential for the treatment of neoplasms. In this study, a novel cyclodextrin (CD)-based nanoparticle drug delivery system has been assembled and characterized for the therapy of folate receptor-positive [FR(+)] cancer. Water-soluble folic acid (FA)-conjugated CD carriers (FACDs) were successfully synthesized and their structures were confirmed by 1D/2D nuclear magnetic resonance (NMR), matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS), high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), and circular dichroism. Drug complexes of adamatane (Ada) and cytotoxic doxorubicin (Dox) with FACD were readily obtained by mixed solvent precipitation. The average size of FACD-Ada-Dox was 1.5–2.5 nm. The host-guest association constant Ka was 1,639 M−1 as determined by induced circular dichroism and the hydrophilicity of the FACDs was greatly enhanced compared to unmodified CD. Cellular uptake and FR binding competitive experiments demonstrated an efficient and preferentially targeted delivery of Dox into FR-positive tumor cells and a sustained drug release profile was seen in vitro. The delivery of Dox into FR(+) cancer cells via endocytosis was observed by confocal microscopy and drug uptake of the targeted nanoparticles was 8-fold greater than that of non-targeted drug complexes. Our docking results suggest that FA, FACD and FACD-Ada-Dox could bind human hedgehog interacting protein that contains a FR domain. Mouse cardiomyocytes as well as fibroblast treated with FACD-Ada-Dox had significantly lower levels of reactive oxygen species, with increased content of glutathione and glutathione peroxidase activity, indicating a reduced potential for Dox-induced cardiotoxicity. These results indicate that the targeted drug complex possesses high drug association and sustained drug release properties with good biocompatibility and physiological stability. The novel FA-conjugated β-CD based drug complex might be promising as an anti-tumor treatment for FR(+) cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: For medical and allied health students, bioscience knowledge underpins the successful scaffolding of learning in their developmental and advanced level units. Many of these students complete theory-based Bioscience units, followed by a unit in Pharmacology, which specifically requires knowledge of anatomy, physiology and microbiology. In general, studies of recall report relatively large losses over short retention intervals (months), which accumulate, but level off, for longer retention intervals (years) (Custers, 2010). However, there are no studies that specifically test the recall of bioscience knowledge by allied health students. Methods: We are tracking the recall of bioscience in nursing students prior to, and during, their Pharmacology unit. In each semester, students complete short, basic, knowledge-based MCQ quizzes on concepts from (i) the gastrointestinal system and (ii) fundamental microbiology. Students were given 5 days warning about the microbiology quizzes but were given no warning prior to the gastrointestinal system quiz. Performance in these quizzes was compared to individual student’s results in the final examination on these topics in the first semester of their degree. Results: At the start of the study, the nursing students performed better in the exam MCQs on the gastrointestinal system than on microbiology. In the exam, the students’ mean marks for the gastrointestinal system ranged from 69–83%, and this was successively reduced to 63%, 53% and 49% after 4, 9 and 16 months, respectively. The mean exam marks for microbiology was 48–58%, and this did not change significantly after 4 (63%), 9 (59%) or 16 months (47%). This suggests that warning the nursing students that they were to be quizzed on microbiology may have helped their recall. However, after 16 months regardless of the subject, the nursing students undertaking the Pharmacology unit recalled less than half of the bioscience quiz answers. Conclusions: Nursing students may not have the recall of bioscience necessary to study pharmacology, and this may limit their success in pharmacology. Reference: Custers, E. J. F. M. (2010). Long-term retention of basic science knowledge: a review study. Advances in Health Science Education, 15, 109–128.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Prescribing is a complex task, requiring specific knowledge and skills, and the execution of effective, context-specific clinical reasoning. Systematic reviews indicate medical prescribing errors have a median rate of 7% [IQR 2%-14%] of medication orders [1-3]. For podiatrists pursuing prescribing rights, a clear need exists to ensure practitioners develop a well-defined set of prescribing skills, which will contribute to competent, safe and appropriate practice. Aim To investigate the methods employed to teach and assess the principles of effective prescribing in the undergraduate podiatry program and compare and contrast these findings with four other non-medical professions who undertake prescribing after training at Queensland University of Technology. Method The NPS National Prescribing Competency Standards were employed as the prescribing standard. A curriculum mapping exercise was undertaken to determine whether the prescribing principles articulated in the competency standards were addressed by each profession. Results A range of methods are currently utilised to teach prescribing across disciplines. Application of prescribing competencies to the context of each profession appears to influence the teaching methods used. Most competencies were taught using a multimodal format, including interactive lectures, self-directed learning, tutorial sessions and clinical placement. In particular clinical training was identified as the most consistent form of educating safe prescribers across all five disciplines. Assessment of prescribing competency utilised multiple techniques including written and oral examinations and research tasks, case studies, objective structured clinical examination exercises and the assessment of clinical practice. Effective and reliable assessment of prescribing undertaken by students in diverse settings remains challenging e.g. that occurring in the clinical practice environment. Conclusion Recommendations were made to refine curricula and to promote efficient cross-discipline teaching by staff from the disciplines of podiatry, pharmacy, nurse practitioner, optometry and paramedic science. Students now experience a sophisticated level of multidisciplinary learning in the clinical setting which integrates the expertise and skills of experience prescribers combined with innovative information technology platforms (CCTV and live patient assessments). Further work is required to establish a practical, effective approach to the assessment of prescribing competence especially between the university and clinical settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The antinociceptive properties of oxycodone and its metabolites were studied in models of thermal and mechanical nociception and in the spinal nerve ligation (SNL) model of neuropathic pain in rats. Oxycodone induced potent antinociception after subcutaneous (s.c.) administration in all models of nociception used in rats compared with morphine, methadone and its enantiomers. In the SNL model of neuropathic pain in rats, oxycodone produced dose dependent antinociception after s.c. administration. The antinociceptive effects of s.c. oxycodone were antagonized by naloxone but not by nor-binaltorphimine (Nor-BNI) a selective κ-opioid receptor antagonist indicating that the antinociceptive properties of oxycodone are predominantly μ-opioid receptor-mediated. The antinociceptive activity of oxymorphone, noroxycodone, and noroxymorphone, oxidative metabolites of oxycodone, were studied to determine their role in the oxycodone-induced antinociception in the rat. Of the metabolites of oxycodone s.c. administration of oxymorphone produced potent thermal and mechanical antinociception. Noroxycodone had a poor antinociceptive effect and noroxymorphone was inactive. Oxycodone produced naloxone-reversible antinociception after intrathecal (i.t) administration with a poor potency compared with morphine and oxymorphone. This seems to be related to the low efficacy and potency of oxycodone to stimulate μ-opioid receptor activation in the spinal cord in μ-opioid receptor agonist-stimulated (GTP)γ[S] autoradiography, compared with morphine and oxymorphone. All metabolites studied were more potent than oxycodone after i.t. administration. I.t. noroxymorphone induced a significantly longer lasting antinociceptive effect compared with the other drugs studied. The role of cytochrome P450 (CYP) 2D6-mediated metabolites on the analgesic activity of oxycodone in humans was studied by blocking the CYP2D6-mediated metabolism of oxycodone with paroxetine. Paroxetine co-administration had no effect on the analgesic effect of oxycodone compared with placebo in chronic pain patients, indicating that oxycodone-induced analgesia and adverse-effects are not dependent of the CYP2D6-mediated metabolism in humans. Although oxycodone has many pharmacologically active metabolites, they seem to have an insignificant role in oxycodone-induced antinociception in humans and rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background To reduce nursing shortages, accelerated nursing programs are available for domestic and international students. However, the withdrawal and failure rates from these programs may be different than for the traditional programs. The main aim of our study was to improve the retention and experience of accelerated nursing students. Methods The academic background, age, withdrawal and failure rates of the accelerated and traditional students were determined. Data from 2009 and 2010 were collected prior to intervention. In an attempt to reduce the withdrawal of accelerated students, we set up an intervention, which was available to all students. The assessment of the intervention was a pre-post-test design with non-equivalent groups (the traditional and the accelerated students). The elements of the intervention were a) a formative website activity of some basic concepts in anatomy, physiology and pharmacology, b) a workshop addressing study skills and online resources, and c) resource lectures in anatomy/physiology and microbiology. The formative website and workshop was evaluated using questionnaires. Results The accelerated nursing students were five years older than the traditional students (p < 0.0001). The withdrawal rates from a pharmacology course are higher for accelerated nursing students, than for traditional students who have undertaken first year courses in anatomy and physiology (p = 0.04 in 2010). The withdrawing students were predominantly the domestic students with non-university qualifications or equivalent experience. The failure rates were also higher for this group, compared to the traditional students (p = 0.05 in 2009 and 0.03 in 2010). In contrast, the withdrawal rates for the international and domestic graduate accelerated students were very low. After the intervention, the withdrawal and failure rates in pharmacology for domestic accelerated students with non-university qualifications were not significantly different than those of traditional students. Conclusions The accelerated international and domestic graduate nursing students have low withdrawal rates and high success rates in a pharmacology course. However, domestic students with non-university qualifications have higher withdrawal and failure rates than other nursing students and may be underprepared for university study in pharmacology in nursing programs. The introduction of an intervention was associated with reduced withdrawal and failure rates for these students in the pharmacology course.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To investigate factors that influence hospital readmissions of elderly patients and to construct a robust hospital readmissions predictive model.