973 resultados para Matrix metalloproteinases


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abnormal matrix metalloproteinase (MMP)-9 levels may have a role in hypertensive disorders of pregnancy. We examined whether MMP-9 genetic polymorphisms (g.-1562C>T and g.-90(CA)(13-25)) modify plasma MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1 levels and the responses to antihypertensive therapy in 214 patients with preeclampsia (PE), 185 patients with gestational hypertension (GH) and a control group of 214 healthy pregnant (HP). Alleles for the g.-90(CA)(13-25) polymorphism were grouped L (low) (<21 CA repeats) or H (high) (>= 21 CA repeats). Plasma MMP-9 and TIMP-1 concentrations were measured by enzyme-linked immunosorbent assay. Plasma MMP-9 concentrations were not affected by genotypes or haplotypes in HP and PE groups, except for the g.-90(CA)(13-25) polymorphism: GH patients with the LH genotype for this polymorphism have higher MMP-9 levels than those with other genotypes. The T allele for the g.-1562C>T polymorphism and the H4 haplotype (combining T and H alleles) are associated with GH and lack of responsiveness to antihypertensive therapy in GH. The H2 haplotype (combining C and H alleles) was associated with lack of responsiveness to antihypertensive therapy in PE, but not in GH. In conclusion, our results show that MMP-9 genetic variants are associated with GH and suggest that MMP-9 haplotypes affect the responsiveness to antihypertensive therapy in hypertensive disorders of pregnancy. The Pharmacogenomics Journal (2012) 12, 489-498; doi: 10.1038/tpj.2011.31; published online 19 July 2011

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: Matrix metalloproteinase-9 (MMP-9) is involved in the atherosclerotic process and functional polymorphisms in the MMP-9 gene affect MMP-9 expression/activity, and are associated with cardiovascular diseases. However, no study has tested the hypothesis that functional MMP-9 polymorphisms could affect MMP-9 levels in obese children. We investigated whether three MMP-9 gene polymorphisms (C-1562T (rs3918242), 90(CA)((14-24)) (rs2234681) and Q279R (rs17576)), or haplotypes, affect MMP-9 levels in obese children. Methods: We studied 175 healthy control children and 127 obese children. Plasma MMP-9, tissue inhibitor of MMPs (TIMP)-1 and adiponectin concentrations were measured using enzyme-linked immunosorbent assay. Results: We found similar MMP-9 genotypes, allelic and haplotypes distributions in the two study groups (P > 0.05). However, we found lower plasma MMP-9 concentrations in obese subjects carrying the CC or the QQ genotypes for the C-1562T and the Q279R polymorphisms, respectively, in obese children compared with children with the other genotypes, or with non-obese children with the same genotypes (all P < 0.05). Moreover, we found lower MMP-9 levels and lower MMP-9/TIMP-1 ratios (which reflect net MMP-9 activity) in obese children carrying the H2 haplotype (which combines the C, H and Q alleles for the three polymorphisms, respectively) when compared with obese children carrying the other haplotypes, or with non-obese children carrying the same haplotype (P < 0.05). Conclusions: Our findings show that MMP-9 genotypes and haplotypes affect MMP-9 levels in obese children and adolescents, and suggest that genetic factors may modify relevant pathogenetic mechanisms involved in the development of cardiovascular complications associated with obesity in childhood. International Journal of Obesity (2012) 36, 69-75; doi:10.1038/ijo.2011.169; published online 16 August 2011

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objectives The effects of longterm ethanol consumption on the levels of nitric oxide (NO) and the expression of endothelial NO synthase (eNOS), inducible NO synthase (iNOS) and metalloproteinase-2 (MMP-2) were studied in rat kidney. Methods Male Wistar rats were treated with 20% ethanol (v/v) for 6 weeks. Nitrite and nitrate generation was measured by chemiluminescence. Protein and mRNA levels of eNOS and iNOS were assessed by immunohistochemistry and quantitative real-time polymerase chain reaction, respectively. MMP-2 activity was determined by gelatin zymography. Histopathological changes in kidneys and indices of renal function (creatinine and urea) and tissue injury (mitochondrial respiration) were also investigated. Results Chronic ethanol consumption did not alter malondialdehyde levels in the kidney. Ethanol consumption induced a significant increase in renal nitrite and nitrate levels. Treatment with ethanol increased mRNA expression of both eNOS and iNOS. Immunohistochemical assays showed increased immunostaining for eNOS and iNOS after treatment with ethanol. Kidneys from ethanol-treated rats showed increased activity of MMP-2. Histopathological investigation of kidneys from ethanol-treated animals revealed tubular necrosis. Indices of renal function and tissue injury were not altered in ethanol-treated rats. Conclusions Ethanol consumption increased renal metalloproteinase expression/activity, which was accompanied by histopathological changes in the kidney and elevated NO generation. Since iNOS-derived NO and MMPs contribute to progressive renal injury, the increased levels of NO and MMPs observed in ethanol-treated rats might contribute to progressive renal damage.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This proof-of-concept study assessed whether the reduction of the degradation of the demineralized organic matrix (DOM) by pre-treatment with protease inhibitors (PI) is effective against dentin matrix loss. Bovine dentin slices were demineralized with 0.87 M citric acid, pH 2.3, for 36 hrs. In sequence, specimens were treated or not (UT, untreated) for 1 min with gels containing epigallocatechin 3-gallate (EGCG, 400 A mu M), chlorhexidine (CHX, 0.012%), FeSO4 (1 mM), NaF (1.23%), or no active compound (P, placebo). Specimens were then stored in artificial saliva (5 days, 37 degrees C) with the addition of collagenase (Clostridium histolyticum, 100 U/mL). We analyzed collagen degradation by assaying hydroxyproline (HYP) in the incubation solutions (n = 5) and evaluated the dentin matrix loss by profilometry (n = 12). Data were analyzed by ANOVA and Tukey's test (p < 0.05). Treatment with gels containing EGCG, CHX, or FeSO4 led to significantly lower HYP concentrations in solution and dentin matrix loss when compared with the other treatments. These results strongly suggest that the preventive effects of the PI tested against dentin erosion are due to their ability to reduce the degradation of the DOM.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Study Objectives: To compare the components of the extracellular matrix in the lateral pharyngeal muscular wall in patients with and without obstructive sleep apnea (OSA). This may help to explain the origin of the increased collapsibility of the pharynx in patients with OSA. Design: Specimens from the superior pharyngeal constrictor muscle, obtained during pharyngeal surgeries, were evaluated using histochemical and immunohistochemical analyses to determine the fractional area of collagen types I and II, elastic fibers, versican, fibronectin, and matrix metalloproteinases 1 and 2 in the endomysium. Setting: Academic tertiary center. Patiens: A total of 51 nonobese adult patients, divided into 38 patients with OSA and 13 nonsnoring control subjects without OSA. Interventions: Postintervention study performed on tissues from patients after elective surgery. Measurements and Results: Pharyngeal muscles of patients with OSA had significantly more collagen type I than pharyngeal muscles in control subjects. Collagen type I was correlated positively and independently with age. The other tested components of the extracellular matrix did not differ significantly between groups. In a logistic regression, an additive effect of both the increase of collagen type I and the increase in age with the presence of OSA was observed (odds ratio (OR), 2.06; 95% confidence interval (CI), 1.17-3.63), when compared with the effect of increased age alone (OR, 1.11; 95% CI, 1.03-1.20). Conclusion: Collagen type I in the superior pharyngeal constrictor muscle was more prevalent in patients with OSA and also increased with age. It was hypothesized that this increase could delay contractile-relaxant responses in the superior pharyngeal constrictor muscle at the expiratory-inspiratory phase transition, thus increasing pharyngeal collapsibility.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Matrix metalloproteinases are the components of the tumour microenvironment which play a crucial role in tumour progression. Matrix metalloproteinase-7 (MMP-7) is expressed in a variety of tumours and the expression is associated with an aggressive malignant phenotype and poor prognosis. A role for MMP-7 in the immune escape of tumours has been postulated, but the mechanisms are not clearly understood. The present study was focused on identifying physiological inactivators of MMP-7 and also to unravel the mechanisms involved in MMP-7 mediated immune escape. This study shows that human leukocyte elastase (HLE), secreted by polymorphonuclear leukocytes cleaves MMP-7 in the catalytic domain as revealed by N-terminal sequencing. Further analysis demonstrates that the activity of MMP-7 was drastically decreased after HLE treatment in a time and dose dependent manner. MMP-7 induces apoptosis resistance in tumour cells by cleaving CD95 and CD95L. The effect of HLE on MMP-7 mediated apoptosis resistance was analysed. In vitro stimulation of apoptosis by anti-Apo-1 (anti-CD95 antibody) and the chemotherapeutic drug doxorubicin is reduced by MMP-7. Also tumour specific cytotoxic T cells do not effectively kill tumour cells in the presence of MMP-7. This study revealed that HLE abrogates the negative effect of MMP-7 on apoptosis induced by CD95 stimulation, doxorubicin or cytotoxic T cells and restores apoptosis sensitivity of tumour cells. To gain insight into the possible immune modulatory functions of MMP-7, experiments were performed to identify new immune relevant substrates. The human T cell line, Jurkat, was selected for these studies. Hsc70 which is involved in uncoating of clathrin vesicles was found in the supernatants of the MMP-7 treated cells indicating a modulatory role of MMP-7 on endocytosis. Further studies demonstrated that MMP-7 leads to decreased clathrin staining in HEK293, HepG2, Jurkat, CD4+ T cells and dendritic cells. Results also show MMP-7 treatment increased surface expression of cytotoxic T lymphocyte associated protein-4 (CTLA-4) which accumulated due to inhibition of the clathrin mediated internalization in CD4+CD25+ cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In experimental bacterial meningitis, matrix metalloproteinases (MMPs) and reactive oxygen species (ROS) contribute to brain damage. MMP-9 increases in cerebrospinal fluid (CSF) during bacterial meningitis and is associated with the brain damage that is a consequence of the disease. This study assesses the origin of MMP-9 in bacterial meningitis and how ROS modulate its activity. Rat brain-slice cultures and rat polymorphonuclear cells (PMNs) that had been challenged with capsule-deficient heat-inactivated Streptococcus pneumoniae R6 (hiR6) released MMP-9. Coincubation with either catalase, with the myeloperoxidase inhibitor azide, or with the hypochlorous acid scavenger methionine almost completely prevented activation, but not the release, of MMP-9, in supernatants of human PMNs stimulated with hiR6. Thus, in bacterial meningitis, both brain-resident cells and invading PMNs may act as sources of MMP-9, and stimulated PMNs may activate MMP-9 via an ROS-dependent pathway. MMP-9 activation by ROS may represent a target for therapeutic intervention in bacterial meningitis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mechanical forces are essential for connective tissue homeostasis. The extracellular matrix (ECM) plays a key role in the transmission of forces generated by the organism (e.g. muscle contraction) and externally applied (e.g. gravity). The expression of specific ECM proteins such as collagens and tenascin-C, as well as of matrix metalloproteinases, involved in their turnover, is influenced by mechanical stimuli. The precise mechanisms by which mechanical strains are translated into chemical signals and lead to differential gene expression are however not fully understood. Cell-matrix adhesion sites are good candidates for hosting a "mechanosensory switch", as they transmit forces from the ECM to the cytoskeleton and vice versa by physically linking the cytoskeleton to the ECM. Integrins, transmembrane proteins located to these adhesion sites, have been shown to trigger a set of internal signaling cascades after mechanical stimulation. We have shown that the expression level of tenascin-C directly correlates with externally applied mechanical stress, as well as with RhoA/RhoA-dependent kinase-mediated cytoskeletal tension. Presumably other genes are regulated in a similar manner. The changes in ECM composition and mechanical properties derived from mechanical stress are relevant in medical intervention after ligament and tendon injury.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pneumococcal meningitis (PM) results in high mortality rates and long-lasting neurological deficits. Hippocampal apoptosis and cortical necrosis are histopathological correlates of neurofunctional sequelae in rodent models and are frequently observed in autopsy studies of patients who die of PM. In experimental PM, inhibition of matrix metalloproteinases (MMPs) and/or tumor necrosis factor (TNF)-converting enzyme (TACE) has been shown to reduce brain injury and the associated impairment of neurocognitive function. However, none of the compounds evaluated in these studies entered clinical development. Here, we evaluated two second-generation MMP and TACE inhibitors with higher selectivity and improved oral availability. Ro 32-3555 (Trocade, cipemastat) preferentially inhibits collagenases (MMP-1, -8, and -13) and gelatinase B (MMP-9), while Ro 32-7315 is an efficient inhibitor of TACE. PM was induced in infant rats by the intracisternal injection of live Streptococcus pneumoniae. Ro 32-3555 and Ro 32-7315 were injected intraperitoneally, starting at 3 h postinfection. Antibiotic (ceftriaxone) therapy was initiated at 18 h postinfection, and clinical parameters (weight, clinical score, mortality rate) were recorded. Myeloperoxidase activities, concentrations of cytokines and chemokines, concentrations of MMP-2 and MMP-9, and collagen concentrations were measured in the cerebrospinal fluid. Animals were sacrificed at 42 h postinfection, and their brains were assessed by histomorphometry for hippocampal apoptosis and cortical necrosis. Both compounds, while exhibiting disparate MMP and TACE inhibitory profiles, decreased hippocampal apoptosis and cortical injury. Ro 32-3555 reduced mortality rates and cerebrospinal fluid TNF, interleukin-1β (IL-1β) and collagen levels, while Ro 32-7315 reduced weight loss and cerebrospinal fluid TNF and IL-6 levels.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To evaluate the spectrum and regulation of matrix metalloproteinases (MMPs) in bacterial meningitis (BM), concentrations of MMP-2, MMP-3, MMP-8, and MMP-9 and endogenous inhibitors of metalloproteinases (TIMP-1 and TIMP-2) were measured in the cerebrospinal fluid (CSF) of 27 children with BM. MMP-8 and MMP-9 were detected in 91% and 97%, respectively, of CSF specimens from patients but were not detected in control patients. CSF levels of MMP-9 were higher (P<.05) in 5 patients who developed hearing impairment or secondary epilepsy than in those who recovered without neurological deficits. Levels of MMP-9 correlated with concentrations of TIMP-1 (P<.001) and tumor necrosis factor-alpha (P=.03). Repeated lumbar punctures showed that levels of MMP-8 and MMP-9 were regulated independently and did not correlate with the CSF cell count. Therefore, MMPs may derive not only from granulocytes infiltrating the CSF space but also from parenchymal cells of the meninges and brain. High concentrations of MMP-9 are a risk factor for the development of postmeningitidal neurological sequelae.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND CONTEXT In canine intervertebral disc (IVD) disease, a useful animal model, only little is known about the inflammatory response in the epidural space. PURPOSE To determine messenger RNA (mRNA) expressions of selected cytokines, chemokines, and matrix metalloproteinases (MMPs) qualitatively and semiquantitatively over the course of the disease and to correlate results to neurologic status and outcome. STUDY DESIGN/SETTING Prospective study using extruded IVD material of dogs with thoracolumbar IVD extrusion. PATIENT SAMPLE Seventy affected and 13 control (24 samples) dogs. OUTCOME MEASURES Duration of neurologic signs, pretreatment, neurologic grade, severity of pain, and outcome were recorded. After diagnostic imaging, decompressive surgery was performed. METHODS Messenger RNA expressions of interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-8, IL-10, tumor necrosis factor (TNF), interferon (IFN)γ, MMP-2, MMP-9, chemokine ligand (CCL)2, CCL3, and three housekeeping genes was determined in the collected epidural material by Panomics 2.0 QuantiGene Plex technology. Relative mRNA expression and fold changes were calculated. Relative mRNA expression was correlated statistically to clinical parameters. RESULTS Fold changes of TNF, IL-1β, IL-2, IL-4, IL-6, IL-10, IFNγ, and CCL3 were clearly downregulated in all stages of the disease. MMP-9 was downregulated in the acute stage and upregulated in the subacute and chronic phase. Interleukin-8 was upregulated in acute cases. MMP-2 showed mild and CCL2 strong upregulation over the whole course of the disease. In dogs with severe pain, CCL3 and IFNγ were significantly higher compared with dogs without pain (p=.017/.020). Dogs pretreated with nonsteroidal anti-inflammatory drugs revealed significantly lower mRNA expression of IL-8 (p=.017). CONCLUSIONS The high CCL2 levels and upregulated MMPs combined with downregulated T-cell cytokines and suppressed pro-inflammatory genes in extruded canine disc material indicate that the epidural reaction is dominated by infiltrating monocytes differentiating into macrophages with tissue remodeling functions. These results will help to understand the pathogenic processes representing the basis for novel therapeutic approaches. The canine IVD disease model will be rewarding in this process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND Pneumococcal meningitis (PM) is characterized by high mortality and morbidity including long-term neurofunctional deficits. Neuropathological correlates of these sequelae are apoptosis in the hippocampal dentate gyrus and necrosis in the cortex. Matrix metalloproteinases (MMPs) play a critical role in the pathophysiology of PM. RS-130830 (Ro-1130830, CTS-1027) is a potent partially selective inhibitor of MMPs of a second generation and has been evaluated in clinical trials as an anti-arthritis drug. It inhibits MMPs involved in acute inflammation but has low activity against MMP-1 (interstitial collagenase), MMP-7 (matrilysin) and tumour necrosis factor α converting enzyme (TACE). METHODS A well-established infant rat model of PM was used where live Streptococcus pneumoniae were injected intracisternally and antibiotic treatment with ceftriaxone was initiated 18 h post infection (hpi). Treatment with RS-130830 (75 mg/kg bis in die (bid) i.p., n = 40) was started at 3 hpi while control littermates received the vehicle (succinylated gelatine, n = 42). RESULTS Cortical necrosis was significantly attenuated in animals treated with RS-130830, while the extent of hippocampal apoptosis was not influenced. At 18 hpi, concentrations of interleukin (IL)-1β and IL-10 were significantly lower in the cerebrospinal fluid of treated animals compared to controls. RS-130830 significantly reduced weight loss and leukocyte counts in the cerebrospinal fluid of survivors of PM. CONCLUSION This study identifies MMP inhibition, specifically with RS-130830, as an efficient strategy to attenuate disease severity and cortical brain injury in PM.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ECM of epithelial carcinomas undergoes structural remodeling during periods of uncontrolled growth, creating regional heterogeneity and torsional stress. How tumors maintain ECM integrity in the face of dynamic biophysical forces is still largely unclear. This study addresses these deficiencies using mouse models of human lung adenocarcinoma. Spontaneous lung tumors were marked by disorganized basement membranes, dense collagen networks, and increased tissue stiffness. Metastasis-prone lung adenocarcinoma cells secreted fibulin-2 (Fbln2), a matrix glycoprotein involved in ECM supra-molecular assembly. Fibulin-2 depletion in tumor cells decreased the intra-tumoral abundance of matrix metalloproteinases and reduced collagen cross-linking and tumor compressive properties resulting in inhibited tumor growth and metastasis. Fbln2 deposition within intra-tumoral fibrotic bands was a predictor of poor clinical outcome in patients. Collectively, these findings support a feed-forward model in which tumor cells secrete matrix-stabilizing factors required for the assembly of ECM that preferentially favors malignant progression. To our knowledge, this is the first evidence that tumor cells directly regulate the integrity of their surrounding matrix through the secretion of matrix-stabilizing factors such as fibulin-2. These findings open a new avenue of research into matrix assembly molecules as potential therapeutic targets in cancer patients.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Reasons for performing study: The dysadhesion and destruction of lamellar basement membrane of laminitis may be due to increased lamellar metalloproteinase activity. Characterising lamellar metalloproteinase-2 (MMP-2) and locating it in lamellar tissues may help determine if laminitis pathology is associated with increased MMP-2 transcription. Objectives: To clone and sequence the cDNA encoding lamellar MMP-2, develop antibody and in situ hybridisation probes to locate lamellar MMP-2 and quantitate MMP-2 transcription in normal and laminitis tissue. Methods: Total RNA was isolated, fragmented by RT-PCR, cloned into vector and sequenced. Rabbit anti-equine MMP-2 and labelled MMP-2 riboprobe were developed to analyse and quantitate MMP-2 expression. Results: Western immunoblotting with anti-MMP-2 detected 72 kDa MMP-2 in hoof tissue homogenates and cross-reacted with human MMP-2. Immunohistochemistry and in situ hybridisation detected MMP-2 in the cytoplasm of basal and parabasal cells in close proximity to the lamellar basement membrane. Northern analysis and quantitative real-time PCR showed MMP-2 expression significantly (P

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background Statins are known to enhance atherosclerotic plaque stability through influences on extracellular matrix homeostasis. Net matrix production reflects the relative balance of matrix production and degradation through enzymes such as matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitor of MMP (TIMPs). The effects of statins on endothelial cell production of these parameters following co-exposure with a proatherogenic stimulus such as high glucose are not known. Methods Human endothelial cells were exposed for 72 h to 5 mM> (control) or 25 mM (high) glucose +/- atorvastatin (1 mumol/l). Extracellular matrix homeostasis was assessed by measuring matrix metalloproteinase (MMP)-2 secretion, tissue inhibitor of MMP (TIMP)-1 and -2 secretion and net collagen IV production. Results were expressed as percentage +/- SEM of control values. Results Exposure to high glucose increased cellular collagen IV expression to 190.1 +/- 11.7% (P < 0.0001) of control levels. No change in MMP-2 secretion (111.6 +/- 5.2%; P > 0.05) was observed but both TIMP-1 and TIMP-2 expression were increased to 136.3 +/- 6.4% and 144.0 +/- 27.5%, respectively (both P < 0.05). The presence of atorvastatin in high glucose conditions reduced collagen IV expression to 136.1 +/- 20.6%. This was paralleled by increased secretion of MMP-2 to 145.8 +/- 7.8% (P < 0.01), increased TIMP-2 expression to 208.0 +/- 21.3% (P < 0.005 compared with high glucose) but no change in TIMP-1 expression (155.1 +/- 14.6%) compared with high glucose alone. The presence of atorvastatin in control conditions did not affect levels of collagen IV expression (114.5 +/- 13.2%). Conclusions Endothelial cell exposure to high glucose was associated with a MMP/TIMP profile that increased extracellular matrix production which was attenuated by concurrent exposure to atorvastatin. Consequently, a mechanism by which the atherosclerotic plaque regression that is observed in patients taking these drugs has been demonstrated.