995 resultados para Leaf rust


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Madeira vine (Anredera cordifolia (Ten.) Steenis) is a climber in the angiosperm family Basellaceae. It is native to South America and has naturalised in Australia. It is regarded as a serious environmental weed because of the structural damage it causes to native vegetation. The present study, for the first time, documents anatomical and morphological traits of the leaves of A. cordifolia and considers their implications for its ecology and physiology. Plants were grown under three different light levels, and anatomical and morphological leaf characters were compared among light levels, among cohorts, and with documented traits of the related species, Basella alba L. Stomata were present on both the adaxial and abaxial sides of the leaf, with significantly more stomata on the abaxial side and under high light. This may account for the ability of this species to fix large amounts of carbon and rapidly respond to light gaps. The leaves had very narrow veins and no sclerenchyma, suggesting a low construction cost that is associated with invasive plants. There was no significant difference in any of the traits among different cohorts, which agrees with the claim that A. cordifolia primarily propagates vegetatively. The anatomy and morphology of A. cordifolia was similar to that of B. alba.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The invasive liana cat’s claw creeper Dolichandra unguis-cati (L.) L.G. Lohmann (syn. Macfadyena unguis-cati (L.) A.H. Gentry) exhibits intraspecific variation in leaf morphology, but this is rarely noted in the published literature. The present study documents variation in leaf morphology in two forms of the species that occur in Australia (long pod and short pod). Leaf morphology is compared between the two forms and the position of the shoots (trunk and ground) at the only two sites in which they co-occur. Leaves were categorised on the basis of leaflet number and the presence or absence of tendrils. Simple leaves were produced mainly on shoots growing along the ground and were more abundant in the short-pod form. Long-pod plants were dominated by bifoliate leaves with tendrils. Cat’s claw creeper exhibits considerably wider variation in leaf morphology than recorded previously. Variations in leaf morphology may be linked to differences in the genotype, developmental stage and plastic responses of the plants. Understanding these variations may have implications for taxonomic delimitation and improved management, particularly biological control involving leaf-feeding insects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Epidemiological studies have shown a reduced incidence of cardiovascular disease in the Mediterranean population attributed to the consumption of dietary olive oil rich in antioxidants. This has lead to increased interest in the antioxidant properties of other phenolic compounds of olive tree products. It has been suggested that olive leaf extract may also have health benefits due to its antioxidant and anti-inflammatory activities. Antioxidants can prevent the effects of oxidative metabolism by scavenging free radicals and decreasing the hyperactivity of platelets associated with the development of occlusive thrombosis. No studies to date have investigated the effects of olive leaf extract on platelet function to our knowledge. Improved understanding of the antioxidant properties of olive leaf extract and its effect on platelet function could lead to improved cardiovascular health. Objective The current study used an olive leaf extract prepared from the Olea europaea L. tree. The aim was to determine if polyphenols in olive leaf extract would reduce platelet activity and, to establish an optimal dose in vitro that would reduce platelet aggregation and ATP release. Design Eleven subjects with normal platelet counts (150–400 x 109/L) were recruited for the current in vitro study. Olive leaf extract was added to citrated whole blood to obtain five concentrations ranging from 5.4 ug/mL to 54.0 ug/mL for a dose response curve. Baseline samples, without olive leaf extract were used as a negative control for each subject. After 2 hours incubation with olive leaf extract samples were analyzed for platelet aggregation and ATP release from platelets stimulated by the addition of collagen. Results Whole blood analysis (n=11) showed a clear dose-dependant reduction in platelet aggregation with the increasing olive leaf extract concentrations (p<0.0001). There was also a similar decrease in ATP release from collagen stimulated platelets (p=0.02). Conclusion In the current study the olive leaf extract obtained from Olea europaea L. inhibited platelet aggregation and ATP release from collagen stimulated platelets in vitro. This study suggests olive leaf extract may prevent occlusive thrombosis by reducing platelet hyperactivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Yd2 gene for “resistance” to barley yellow dwarf virus (BYDV) has been widely used in barley (Hordeum vulgare). We have tested Australian isolates of BYDV of varying severity against barley genotypes with and without the Yd2 gene and report here a positive relationship between symptoms and virus levels determined by ELISA. Cultivar Shannon is the result of backcrossing the resistant line CI 3208 to cultivar Proctor, a susceptible line. It appears to be intermediate in reaction to BYDV between Proctor and CI 3208, although it carries the major gene, Yd2. Unlike the whole plant studies, no significant differences were observed with regard to the ability of protoplasts derived from these various genotypes to support BYDV replication. It is therefore demonstrated for the first time that the Yd2 gene is not among the small number of resistance genes which are effective against virus replication in isolated protoplasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particles of carrot red leaf virus (CRLV; luteovirus group) purified from chervil (Anthriscus cerefolium) contain a single ssRNA species of mol. wt. about 1.8 x 106 and a major protein of mol. wt. about 25000. CRLV acts as a helper for aphid transmission of carrot mottle virus (CMotV; ungrouped) from mixedly infected plants. Virus preparations purified from such plants possess the infectivity of both viruses but contain particles indistinguishable from those of CRLV; some of the particles are therefore thought to consist of CMotV RNA packaged in CRLV coat protein. When RNA from such preparations was electrophoresed in agarose/polyacrylamide gels, CMotV infectivity was associated with an RNA band that migrated ahead of the CRLV RNA band and had an estimated mol. wt. of about 1.5 x 106, similar to that previously found for the infective ssRNA extracted directly from Nicotiana clevelandii leaves infected with CMotV alone. Preparations of dsRNA from CMotV-infected N. clevelandii leaves contained two species: one of mol. wt. about 3.2 x 106, presumably the replicative form of the infective ssRNA, and the other, mol. wt. about 0.9 x 106, of unknown origin and function. The infective agent in buffer extracts of CMotV-infected N. clevelandii was resistant to RNase (although the enzyme acted as a reversible inhibitor of infection at high concentrations) and is therefore not unprotected RNA. It may be protected within the approximately 52 nm enveloped structures previously reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particles of two isolates of subterranean clover red leaf virus were purified by a method in which infected plant tissue was digested with an industrial-grade cellulase, Celluclast® 2.0 L type X. The yields of virus particles using this enzyme were comparable with those obtained using either of two laboratory-grade cellulases, Cellulase type 1 (Sigma) and Driselase®. However, the specific infectivity or aphid transmissibility of the particles purified using Celluclast® was 10-100 times greater than those of preparations obtained using laboratory-grade cellulases or no enzyme. The main advantage of using Celluclast® is that at present in Australia its cost is only ca. 1% of laboratory-grade cellulases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-temperature, low-light (HTLL) treatment of 35S:PAP1 Arabidopsis thaliana over-expressing the PAP1 (Production of Anthocyanin Pigment 1) gene results in reversible reduction of red colouration, suggesting the action of additional anthocyanin regulators. High-performance liquid chromatography (HPLC), liquid chromatography mass spectrometry (LCMS) and Affimetrix®-based microarrays were used to measure changes in anthocyanin, flavonoids, and gene expression in response to HTLL. HTLL treatment of control and 35S:PAP1 A. thaliana resulted in a reversible reduction in the concentrations of major anthocyanins despite ongoing over-expression of the PAP1 MYB transcription factor. Twenty-one anthocyanins including eight cis-coumaryl esters were identified by LCMS. The concentrations of nine anthocyanins were reduced and those of three were increased, consistent with a sequential process of anthocyanin degradation. Analysis of gene expression showed down-regulation of flavonol and anthocyanin biosynthesis and of transport-related genes within 24 h of HTLL treatment. No catabolic genes up-regulated by HTLL were found. Reductions in the concentrations of anthocyanins and down-regulation of the genes of anthocyanin biosynthesis were achieved by environmental manipulation, despite ongoing over-expression of PAP1. Quantitative PCR showed reduced expression of three genes (TT8, TTG1 and EGL3) of the PAP1 transcriptional complex, and increased expression of the potential transcriptional repressors AtMYB3, AtMYB6 and AtMYBL2 coincided with HTLL-induced down-regulation of anthocyanin biosynthesis. HTLL treatment offers a model system with which to explore anthocyanin catabolism and to discover novel genes involved in the environmental control of anthocyanins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The vegetative phenotype of the pea mutant unifoliata (uni) is a simplification of the wild-type compound leaf to a single leaflet. Mutant uni plants are also self-sterile and the flowers resemble known floral meristem and organ identity mutants. In Antirrhinum and Arabidopsis, mutations in the floral meristem identity gene FLORICAULA/LEAFY (FLO/LFY) affect flower development alone, whereas the tobacco FLO/LFY homologue, NFL, is expressed in vegetative tissues, suggesting that NFL specifies determinacy in the progenitor cells for both flowers and leaves. In this paper, we characterised the pea homologue of FLO/LFY. Results The pea cDNA homologue of FLO/LFY, PEAFLO, mapped to the uni locus in recombinant-inbred mapping populations and markers based on PEAFLO cosegregated with uni in segregating sibling populations. The characterisation of two spontaneous uni mutant alleles, one containing a deletion and the other a point mutation in the PEAFLO coding sequences, predicted that PEAFLO corresponds to UNI and that the mutant vegetative phenotype was conferred by the defective PEAFLO gene. Conclusions The uni mutant demonstrates that there are shared regulatory processes in the morphogenesis of leaves and flowers and that floral meristem identity genes have an extended role in plant development. Pleiotropic regulatory genes such as UNI support the hypothesis that leaves and flowers derive from a common ancestral sporophyll-like structure. The regulation of indeterminacy during leaf and flower morphogenesis by UNI may reflect a primitive function for the gene in the pre-angiosperm era.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hybrid nano-urchin structure consisting of spherical onion-like carbon and MnO2 nanosheets is synthesized by a facile and environmentally-friendly hydrothermal method. Lithium-ion batteries incorporating the hybrid nano-urchin anode exhibit reversible lithium storage with superior specific capacity, enhanced rate capability, stable cycling performance, and nearly 100% Coulombic efficiency. These results demonstrate the effectiveness of designing hybrid nano-architectures with uniform and isotropic structure, high loading of electrochemically-active materials, and good conductivity for the dramatic improvement of lithium storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The foliage of a plant performs vital functions. As such, leaf models are required to be developed for modelling the plant architecture from a set of scattered data captured using a scanning device. The leaf model can be used for purely visual purposes or as part of a further model, such as a fluid movement model or biological process. For these reasons, an accurate mathematical representation of the surface and boundary is required. This paper compares three approaches for fitting a continuously differentiable surface through a set of scanned data points from a leaf surface, with a technique already used for reconstructing leaf surfaces. The techniques which will be considered are discrete smoothing D2-splines [R. Arcangeli, M. C. Lopez de Silanes, and J. J. Torrens, Multidimensional Minimising Splines, Springer, 2004.], the thin plate spline finite element smoother [S. Roberts, M. Hegland, and I. Altas, Approximation of a Thin Plate Spline Smoother using Continuous Piecewise Polynomial Functions, SIAM, 1 (2003), pp. 208--234] and the radial basis function Clough-Tocher method [M. Oqielat, I. Turner, and J. Belward, A hybrid Clough-Tocher method for surface fitting with application to leaf data., Appl. Math. Modelling, 33 (2009), pp. 2582-2595]. Numerical results show that discrete smoothing D2-splines produce reconstructed leaf surfaces which better represent the original physical leaf.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, the beauty leaf plant (Calophyllum Inophyllum) is being considered as a potential 2nd generation biodiesel source due to high seed oil content, high fruit production rate, simple cultivation and ability to grow in a wide range of climate conditions. However, however, due to the high free fatty acid (FFA) content in this oil, the potential of this biodiesel feedstock is still unrealized, and little research has been undertaken on it. In this study, transesterification of beauty leaf oil to produce biodiesel has been investigated. A two-step biodiesel conversion method consisting of acid catalysed pre-esterification and alkali catalysed transesterification has been utilized. The three main factors that drive the biodiesel (fatty acid methyl ester (FAME)) conversion from vegetable oil (triglycerides) were studied using response surface methodology (RSM) based on a Box-Behnken experimental design. The factors considered in this study were catalyst concentration, methanol to oil molar ratio and reaction temperature. Linear and full quadratic regression models were developed to predict FFA and FAME concentration and to optimize the reaction conditions. The significance of these factors and their interaction in both stages was determined using analysis of variance (ANOVA). The reaction conditions for the largest reduction in FFA concentration for acid catalysed pre-esterification was 30:1 methanol to oil molar ratio, 10% (w/w) sulfuric acid catalyst loading and 75 °C reaction temperature. In the alkali catalysed transesterification process 7.5:1 methanol to oil molar ratio, 1% (w/w) sodium methoxide catalyst loading and 55 °C reaction temperature were found to result in the highest FAME conversion. The good agreement between model outputs and experimental results demonstrated that this methodology may be useful for industrial process optimization for biodiesel production from beauty leaf oil and possibly other industrial processes as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Realistic virtual models of leaf surfaces are important for a number of applications in the plant sciences, such as modelling agrichemical spray droplet movement and spreading on the surface. In this context, the virtual surfaces are required to be sufficiently smooth to facilitate the use of the mathematical equations that govern the motion of the droplet. While an effective approach is to apply discrete smoothing D2-spline algorithms to reconstruct the leaf surfaces from three-dimensional scanned data, difficulties arise when dealing with wheat leaves that tend to twist and bend. To overcome this topological difficulty, we develop a parameterisation technique that rotates and translates the original data, allowing the surface to be fitted using the discrete smoothing D2-spline methods in the new parameter space. Our algorithm uses finite element methods to represent the surface as a linear combination of compactly supported shape functions. Numerical results confirm that the parameterisation, along with the use of discrete smoothing D2-spline techniques, produces realistic virtual representations of wheat leaves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Premise of the study: Plant invasiveness can be promoted by higher values of adaptive traits (e.g., photosynthetic capacity, biomass accumulation), greater plasticity and coordination of these traits, and by higher and positive relative influence of these functionalities on fitness, such as increasing reproductive output. However, the dataset for this premise rarely include linkages between epidermal-stomatal traits, leaf internal anatomy, and physiological performance. Methods: Three ecological pairs of invasive vs non-invasive (native) woody vine species of South-East Queensland, Australia were investigated for trait differences in leaf morphology and anatomy under varying light intensity. The linkages of these traits with physiological performance (e.g. water use efficiency, photosynthesis, and leaf construction cost) and plant adaptive traits of specific leaf area, biomass, and relative growth rates were also explored. Key results: Mean leaf anatomical trait differed significantly between the two groups, except for stomatal size. Plasticity of traits, and to a very limited extent, their phenotypic integration were higher in the invasive relative to the native species. ANOVA, ordination, and analysis of similarity suggest that for leaf morphology and anatomy, the three functional strategies contribute to the differences between the two groups in the order phenotypic plasticity > trait means > phenotypic integration. Conclusions: The linkages demonstrated in the study between stomatal complex/gross anatomy and physiology are scarce in the ecological literature of plant invasiveness, but the findings suggest that leaf anatomical traits need to be considered routinely as part of weed species assessment and in the worldwide leaf economic spectrum.