909 resultados para LRP-1 receptor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-density lipoprotein (LDL) receptors are overexpressed in most neoplastic cell lines and provide a mechanism for the internalization and concentration of drug-laden nanoemulsions that bind to these receptors. The aim of the present study was to determine whether the administration of standard chemotherapeutic schemes can alter the expression of LDL and LDL receptor-related protein 1 (LRP-1) receptors in breast carcinoma. Fragments of tumoral and normal breast tissue from 16 consecutive volunteer women with breast cancer in stage II or III were obtained from biopsies before the beginning of neoadjuvant chemotherapy and after chemotherapy, from fragments excised during mastectomy. Tissues were analyzed by immunohistochemistry for both receptors. Because complete response to treatment was achieved in 4 patients, only the tumors from 12 were analyzed. Before chemotherapy, there was overexpression of LDL receptor in the tumoral tissue compared to normal breast tissue in 8 of these patients. LRP-1 receptor overexpression was observed in tumors of 4 patients. After chemotherapy, expression of both receptors decreased in the tumors of 6 patients, increased in 4 and was unchanged in 2. Nonetheless, even when chemotherapy reduced receptors expression, the expression was still above normal. The fact that chemotherapy does not impair LDL receptors expression supports the use of drug carrier systems that target neoplastic cells by the LDL receptor endocytic pathway in patients on conventional chemotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alzheimer's disease (AD) is characterised by the extensive deposition of amyloid beta (Aß) within the parenchyma and vasculature of the brain. It is hypothesised that a dysfunction in Aß degradation and/or its removal from the brain may result in accumulation as plaques. Low density lipoprotein receptor-related protein-1 (LRP-1) is a multifunctional receptor shown to be involved in cholesterol metabolism but also the removal of Aß from the brain. Its ability to transport Aß from the brain to the periphery has made it an attractive candidate for involvement in Alzheimer's disease (AD). We have assessed the frequencies of 9 tag- SNPs and the commonly studied synonymous SNP within exon 3 (rs1799986) in a multi-centre AD/control cohort and performed haplotype analysis. We found no evidence from a combined total of 412 controls and 1057 AD patients to support the involvement of LRP-1 variation, including the most commonly studied variant in rs1799986 in conferring genetic susceptibility to increased risk of AD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background: The current obesity epidemic is thought to be partly driven by over-consumption of sugar-sweetened diets and soft drinks. Loss-of-control over eating and addiction to drugs of abuse share overlapping brain mechanisms including changes in motivational drive, such that stimuli that are often no longer ‘liked’ are still intensely ‘wanted’ [7,8]. The neurokinin 1 (NK1) receptor system has been implicated in both learned appetitive behaviors and addiction to alcohol and opioids; however, its role in natural reward seeking remains unknown. Methodology/Principal Findings: We sought to determine whether the NK1-receptor system plays a role in the reinforcing properties of sucrose using a novel selective and clinically safe NK1-receptor antagonist, ezlopitant (CJ-11,974), in three animal models of sucrose consumption and seeking. Furthermore, we compared the effect of ezlopitant on ethanol consumption and seeking in rodents. The NK1-receptor antagonist, ezlopitant decreased appetitive responding for sucrose more potently than for ethanol using an operant self-administration protocol without affecting general locomotor activity. To further evaluate the selectivity of the NK1-receptor antagonist in decreasing consumption of sweetened solutions, we compared the effects of ezlopitant on water, saccharin-, and sodium chloride (NaCl) solution consumption. Ezlopitant decreased intake of saccharin but had no effect on water or salty solution consumption. Conclusions/Significance: The present study indicates that the NK1-receptor may be a part of a common pathway regulating the self-administration, motivational and reinforcing aspects of sweetened solutions, regardless of caloric value, and those of substances of abuse. Additionally, these results indicate that the NK1-receptor system may serve as a therapeutic target for obesity induced by over-consumption of natural reinforcers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reason why a sustained high concentration of insulin induces laminitis in horses remains unclear. Cell proliferation occurs in the lamellae during insulin-induced laminitis and in other species high concentrations of insulin can activate receptors for the powerful cell mitogen, insulin-like growth factor (IGF)-1. The first aim of this study was to determine if IGF-1 receptors (IGF-1R) are activated in the hoof during insulin-induced laminitis. Gene expression for IGF-1R and the insulin receptor (InsR) was measured using qRT-PCR, in lamellar tissue from control horses and from horses undergoing a prolonged euglycaemic, hyperinsulinaemic clamp (p-EHC), during the mid-developmental (24 h) and acute (46 h) phases of insulin-induced laminitis. Gene expression for both receptors was decreased 13–32-fold (P < 0.05) at both time-points in the insulin-treated horses. A second aim was to determine if the down-regulation of the receptor genes could be accounted for by an increase in circulating IGF-1. Serum IGF-1 was measured at 0, 10, 25 and 46 h post-treatment in horses given a p-EHC for approximately 46 h, and in matched controls administered a balanced, electrolyte solution. There was no increase in serum IGF-1 concentrations during the p-EHC, consistent with down-regulation of both receptors by insulin. Stimulation of the IGF-1R by insulin may lead to inappropriate lamellar epidermal cell proliferation and lamellar weakening, a potential mechanism for hyperinsulinaemic laminitis. Targeting this receptor may provide insights into the pathogenesis or identify a novel therapy for hyperinsulinaemic laminitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MC1R gene variants have previously been associated with red hair and fair skin color, moreover skin ultraviolet sensitivity and a strong association with melanoma has been demonstrated for three variant alleles that are active in influencing pigmentation: Arg151Cys, Arg160Trp, and Asp294His. This study has confirmed these pigmentary associations with MC1R genotype in a collection of 220 individuals drawn from the Nambour community in Queensland, Australia, 111 of whom were at high risk and 109 at low risk of basal cell carcinoma and squamous cell carcinoma. Comparative allele frequencies for nine MC1R variants that have been reported in the Caucasian population were determined for these two groups, and an association between prevalence of basal cell carcinoma, squamous cell carcinoma, solar keratosis and the same three active MC1R variant alleles was demonstrated [odds ratio = 3.15 95% CI (1.7, 5.82)]. Three other commonly occurring variant alleles: Val60Leu, Val92Met, and Arg163Gln were identified as having a minimal impact on pigmentation phenotype as well as basal cell carcinoma and squamous cell carcinoma risk. A significant heterozygote effect was demonstrated where individuals carrying a single MC1R variant allele were more likely to have fair and sun sensitive skin as well as carriage of a solar lesion when compared with those individuals with a consensus MC1R genotype. After adjusting for the effects of pigmentation on the association between MC1R variant alleles and basal cell carcinoma and squamous cell carcinoma risk, the association persisted, confirming that presence of at least one variant allele remains informative in terms of predicting risk for developing a solar-induced skin lesion beyond that information wained through observation of pigmentation phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several new medicines are in development for the treatment of type 2 diabetes, and cardiovascular outcome trials are the gold standard for these medicines. This editorial demonstrates that despite being available for over 10 years, there are no cardiovascular outcome studies for any of the glucagon-like peptide-1 (GLP-1) receptor agonists, which demonstrate cardiovascular safety or benefit in subjects with high cardiovascular risk. The author argues that the FDA should be ensuring that clinical outcome studies for subjects with type 2 diabetes and high cardiovascular risk be undertaken in a timelier manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background To investigate potential cardiovascular and other effects of long-term pharmacological interleukin 1 (IL-1) inhibition, we studied genetic variants that produce inhibition of IL-1, a master regulator of inflammation. Methods We created a genetic score combining the effects of alleles of two common variants (rs6743376 and rs1542176) that are located upstream of IL1RN, the gene encoding the IL-1 receptor antagonist (IL-1Ra; an endogenous inhibitor of both IL-1α and IL-1β); both alleles increase soluble IL-1Ra protein concentration. We compared effects on inflammation biomarkers of this genetic score with those of anakinra, the recombinant form of IL-1Ra, which has previously been studied in randomised trials of rheumatoid arthritis and other inflammatory disorders. In primary analyses, we investigated the score in relation to rheumatoid arthritis and four cardiometabolic diseases (type 2 diabetes, coronary heart disease, ischaemic stroke, and abdominal aortic aneurysm; 453 411 total participants). In exploratory analyses, we studied the relation of the score to many disease traits and to 24 other disorders of proposed relevance to IL-1 signalling (746 171 total participants). Findings For each IL1RN minor allele inherited, serum concentrations of IL-1Ra increased by 0·22 SD (95% CI 0·18–0·25; 12·5%; p=9·3 × 10−33), concentrations of interleukin 6 decreased by 0·02 SD (−0·04 to −0·01; −1·7%; p=3·5 × 10−3), and concentrations of C-reactive protein decreased by 0·03 SD (−0·04 to −0·02; −3·4%; p=7·7 × 10−14). We noted the effects of the genetic score on these inflammation biomarkers to be directionally concordant with those of anakinra. The allele count of the genetic score had roughly log-linear, dose-dependent associations with both IL-1Ra concentration and risk of coronary heart disease. For people who carried four IL-1Ra-raising alleles, the odds ratio for coronary heart disease was 1·15 (1·08–1·22; p=1·8 × 10−6) compared with people who carried no IL-1Ra-raising alleles; the per-allele odds ratio for coronary heart disease was 1·03 (1·02–1·04; p=3·9 × 10−10). Per-allele odds ratios were 0·97 (0·95–0·99; p=9·9 × 10−4) for rheumatoid arthritis, 0·99 (0·97–1·01; p=0·47) for type 2 diabetes, 1·00 (0·98–1·02; p=0·92) for ischaemic stroke, and 1·08 (1·04–1·12; p=1·8 × 10−5) for abdominal aortic aneurysm. In exploratory analyses, we observed per-allele increases in concentrations of proatherogenic lipids, including LDL-cholesterol, but no clear evidence of association for blood pressure, glycaemic traits, or any of the 24 other disorders studied. Modelling suggested that the observed increase in LDL-cholesterol could account for about a third of the association observed between the genetic score and increased coronary risk. Interpretation Human genetic data suggest that long-term dual IL-1α/β inhibition could increase cardiovascular risk and, conversely, reduce the risk of development of rheumatoid arthritis. The cardiovascular risk might, in part, be mediated through an increase in proatherogenic lipid concentrations. Funding UK Medical Research Council, British Heart Foundation, UK National Institute for Health Research, National Institute for Health Research Cambridge Biomedical Research Centre, European Research Council, and European Commission Framework Programme 7.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The insulin‑like growth factor 1 receptor (IGF1R) pathway plays an important role in the pathogenesis of non‑small cell lung cancer (NSCLC) and also provides a mechanism of resistance to targeted therapies. IGF1R is therefore an ideal therapeutic target and several inhibitors have entered clinical trials. However, thus far the response to these inhibitors has been poor, highlighting the importance of predictive biomarkers to identify patient cohorts who will benefit from these targeted agents. It is well‑documented that mutations and/or deletions in the epidermal growth factor receptor (EGFR) tyrosine kinase (TK) domain predict sensitivity of NSCLC patients to EGFR TK inhibitors. Single‑nucleotide polymorphisms (SNPs) in the IGF pathway have been associated with disease, including breast and prostate cancer. The aim of the present study was to elucidate whether the IGF1R TK domain harbours SNPs, somatic mutations or deletions in NSCLC patients and correlates the mutation status to patient clinicopathological data and prognosis. Initially 100 NSCLC patients were screened for mutations/deletions in the IGF1R TK domain (exons 16‑21) by sequencing analysis. Following the identification of SNP rs2229765, a further 98 NSCLC patients and 866 healthy disease‑free control patients were genotyped using an SNP assay. The synonymous SNP (rs2229765) was the only aberrant base change identified in the IGF1R TK domain of 100 NSCLC patients initially analysed. SNP rs2229765 was detected in exon 16 and was found to have no significant association between IGF1R expression and survival. The GA genotype was identified in 53.5 and 49.4% of NSCLC patients and control individuals, respectively. No significant difference was found in the genotype (P=0.5487) or allele (P=0.9082) frequencies between the case and control group. The present findings indicate that in contrast to the EGFR TK domain, the IGF1R TK domain is not frequently mutated in NSCLC patients. The synonymous SNP (rs2229765) had no significant association between IGF1R expression and survival in the cohort of NSCLC patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The upstream proinflammatory interleukin-1 (IL-1) cytokines, together with a naturally occurring IL-1 receptor antagonist (IL-1Ra), play a significant role in several diseases and physiologic conditions. The IL-1 proteins affect glucose homeostasis at multiple levels contributing to vascular injuries and metabolic dysregulations that precede diabetes. An association between IL-1 gene variations and IL-1Ra levels has been suggested, and genetic studies have reported associations with metabolic dysregulation and altered inflammatory responses. The principal aims of this study were to: 1) examine the associations of IL-1 gene variation and IL-1Ra expression in the development and persistence of thyroid antibodies in subacute thyroiditis; 2) investigate the associations of common variants in the IL-1 gene family with plasma glucose and insulin concentrations, glucose homeostasis measures and prevalent diabetes in a representative population sample; 3) investigate genetic and non-genetic determinants of IL-1Ra phenotypes in a cross-sectional setting in three independent study populations; 4) investigate in a prospective setting (a) whether variants of the IL-1 gene family are predictors for clinically incident diabetes in two population-based observational cohort studies; and (b) whether the IL-1Ra levels predict the progression of metabolic syndrome to overt diabetes during the median follow-up of 10.8 and 7.1 years. Results from on patients with subacte thyroiditis showed that the systemic IL-1Ra levels are elevated during a specific proinflammatory response and they correlated with C-reactive protein (CRP) levels. Genetic variation in the IL-1 family seemed to have an association with the appearance of thyroid peroxidase antibodies and persisting local autoimmune responses during the follow-up. Analysis of patients suffering from diabetes and metabolic traits suggested that genetic IL-1 variation and IL-1Ra play a role in glucose homeostasis and in the development of type 2 diabetes. The coding IL-1 beta SNP rs1143634 was associated with traits related to insulin resistance in cross-sectional analyses. Two haplotype variants of the IL-1 beta gene were associated with prevalent diabetes or incident diabetes in a prospective setting and both of these haplotypes were tagged by rs1143634. Three variants of the IL-1Ra gene and one of the IL-1 beta gene were consistently identified as significant, independent determinants of the IL-1Ra phenotype in two or three populations. The proportion of the phenotypic variation explained by the genetic factors was modest however, while obesity and other metabolic traits explained a larger part. Body mass index was the strongest predictor of systemic IL-1Ra concentration overall. Furthermore, the age-adjusted IL-1Ra concentrations were elevated in individuals with metabolic syndrome or diabetes when compared to those free of metabolic dysregulation. In prospective analyses the systemic IL-1Ra levels were found as independent predictors for the development of diabetes in people with metabolic syndrome even after adjustment for multiple other factors, including plasma glucose and CRP levels. The predictive power of IL-1Ra was better than that of CRP. The prospective results also provided some evidence for a role of common IL-1 alpha promoter SNP rs1800587 in the development of type 2 diabetes among men and suggested that the role may be gender specific. Likewise, common variations in the IL-1 beta coding region may have a gender specific association with diabetes development. Further research on the potential benefits of IL-1Ra measurements in identifying individuals at high risk for diabetes, who then could be targeted for specific treatment interventions, is warranted. It has been reported in the recent literature that IL-1Ra secreted from adipose tissue has beneficial effects on glucose homeostasis. Furthermore, treatment with recombinant human IL-1Ra has been shown to have a substantial therapeutic potential. The genetic results from the prospective analyses performed in this study remain inconclusive, but together with the cross-sectional analyses they suggest gender-specific effects of the IL-1 variants on the risk of diabetes. Larger studies with more extensive genotyping and resequencing may help to pinpoint the exact variants responsible and to further elucidate the biological mechanisms for the observed associations. This would improve our understanding of the pathways linking inflammation and obesity with glucose and insulin metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current treatment for glioblastoma includes temozolomide (TMZ) chemotherapy, yet the mechanism of action of TMZ is not thoroughly understood. Here, we investigated the TMZ-induced changes in the proteome of the glioma-derived cell line (U251) by 2D DIGE. We found 95 protein spots to be significantly altered in their expression after TMZ treatment. MS identified four upregulated spots: aspartyl tRNA synthetase glutathione synthetase, interleukin-1 receptor-associated kinase-4 (IRAK4), and breast carcinoma amplified sequence-1 and one downregulated spot: optineurin. TMZ-induced regulation of these five genes was validated by RT-qPCR andWestern blot analysis. RNAi-mediated knockdown of IRAK4, an important mediator of Toll-like receptors signaling and chemoresistance, rendered the glioma cells resistant to TMZ. High levels of IRAK4 induced upon TMZ treatment resulted in IRAK1 downregulation and inhibition of NFkB pathway. Endogenous IRAK4 protein, but not transcript levels in glioma cell lines, correlated with TMZ sensitivity. Thus, we have identified several TMZ-modulated proteins and discovered an important novel role for IRAK4 in determining TMZ sensitivity of glioma cells through its ability to inhibit Toll-like receptor signaling and NFkB pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein therapeutics targeting inflammatory mediators have shown great promise for the treatment of autoimmunities such as rheumatoid arthritis (RA). However, a significant challenge in this area has been their low in vivo stability and consequently their severely compromised therapeutic efficacy. One such therapeutic molecule IL-1 receptor antagonist (IL-1ra), used in the treatment of rheumatoid arthritis, has displayed only modest efficacy in human clinical trials owing to its short biological half-life. Herein, we report a novel approach to conglomerate individual protein entities into a drug depot by incorporation of an amyloidogenic motif Lys-Phe-Phe-Glu (KFFE) thereby dramatically improving their systemic persistence and in turn their therapeutic efficacy in a mice model of autoimmune arthritis. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondrial DNA control region segment I sequences and melanocortin 1 receptor (MC1R) gene polymorphism were examined in ethnic populations in the silk road region of China. Both the frequencies of the MC1R variants and the results of mtDNA data in this region presented intermediate values between those of Europe and East and Southeast Asia, which suggested extensive gene admixture in this area and was in general agreement with previous studies. Phylogenetic analysis of the ethnic populations in the Silk Road region that based on mtDNA data didn't show expected cluster pattern according to their ethnogenesis. We suspect that a high migration rate in female among these closely related populations and other three demographic events might account for it.