970 resultados para KAPPA-B


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Hypercapnic acidosis exerts protective effects in acute lung injury but may also slow cellular repair. These effects may be mediated via inhibition of nuclear factor-kappa B (NF-kappa B), a pivotal transcriptional regulator in inflammation and repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue destruction characterizes infection with Mycobacterium tuberculosis (Mtb). Type I collagen provides the lung's tensile strength, is extremely resistant to degradation, but is cleaved by matrix metalloproteinase (MMP)-1. Fibroblasts potentially secrete quantitatively more MMP-1 than other lung cells. We investigated mechanisms regulating Mtb-induced collagenolytic activity in fibroblasts in vitro and in patients. Lung fibroblasts were stimulated with conditioned media from Mtb-infected monocytes (CoMTb). CoMTb induced sustained increased MMP-1 (74 versus 16 ng/ml) and decreased tissue inhibitor of metalloproteinase (TIMP)-1 (8.6 versus 22.3 ng/ml) protein secretion. CoMTb induced a 2.7-fold increase in MMP-1 promoter activation and a 2.5-fold reduction in TIMP-1 promoter activation at 24 hours (P = 0.01). Consistent with this, TIMP-1 did not co-localize with fibroblasts in patient granulomas. MMP-1 up-regulation and TIMP-1 down-regulation were p38 (but not extracellular signal–regulated kinase or c-Jun N-terminal kinase) mitogen-activated protein kinase–dependent. STAT3 phosphorylation was detected in fibroblasts in vitro and in tuberculous granulomas.STAT3 inhibition reduced fibroblast MMP-1 secretion by 60% (P = 0.046). Deletion of the MMP-1 promoter NF-B–binding site abrogated promoter induction in response to CoMTb. TNF-, IL-1ß, or Oncostatin M inhibition in CoMTb decreased MMP-1 secretion by 65, 63, and 25%, respectively. This cytokine cocktail activated the same signaling pathways in fibroblasts and induced MMP-1 secretion similar to that induced by CoMTb. This study demonstrates in a cellular model and in patients with tuberculosis that in addition to p38 and NF-B, STAT3 has a key role in driving fibroblast-dependent unopposed MMP-1 production that may be key in tissue destruction in patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Persistent activation of NF-B is central to the pathogenesis of many inflammatory lung disorders including Cystic Fibrosis, Asthma and Chronic Obstructive Pulmonary Disease. A20 is an endogenous negative regulator of NF-B signalling which has been widely described in autoimmune and inflammatory disorders including Diabetes and Crohn’s disease, but which has received little attention in terms of chronic lung disorders. This review examines the existing body of research on A20 regulation of NF-B signalling and details the mechanism and regulation of A20 action focusing, where possible, on pulmonary inflammation. A20 and its associated signalling molecules are highlighted as being of potential therapeutic interest for the treatment of inflammatory disorders and a proposed model of A20 activity in inflammatory lung disease is provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The environmental bacterium Burkholderia cenocepacia causes opportunistic lung infections in immunocompromised individuals, particularly in patients with cystic fibrosis. Infections in these patients are associated with exacerbated inflammation leading to rapid decay of lung function, and in some cases resulting in cepacia syndrome, which is characterized by a fatal acute necrotizing pneumonia and sepsis. B. cenocepacia can survive intracellularly in macrophages by altering the maturation of the phagosome, but very little is known on macrophage responses to the intracellular infection. In this study, we have examined the role of the PI3K/Akt signaling pathway in B. cenocepacia-infected monocytes and macrophages. We show that PI3K/Akt activity was required for NF-kappa B activity and the secretion of proinflammatory cytokines during infection with B. cenocepacia. In contrast to previous observations in epithelial cells infected with other Gram-negative bacteria, Akt did not enhance I kappa B kinase or NF-kappa B p65 phosphorylation, but rather inhibited GSK3 beta, a negative regulator of NF-kappa B transcriptional activity. This novel mechanism of modulation of NF-kappa B activity may provide a unique therapeutic target for controlling excessive inflammation upon B. cenocepacia infection. The Journal of Immunology, 2011, 187: 635-643.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para a obtenção do grau de doutor em Biologia pelo Instituto de Tecnologia Química e Biológica. Universidade Nova de Lisboa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le cancer de la prostate (CaP) est le plus diagnostiqué chez les hommes au Canada et représente le troisième cancer le plus meurtrier au sein de cette population. Malgré l’efficacité des traitements de première ligne, de nombreux patients finiront par développer une résistance et, le cas échéant, verront leur CaP progresser vers une forme plus agressive. Plusieurs paramètres, essentiellement cliniques, permettent de prédire la progression du CaP mais leur sensibilité, encore limitée, implique la nécessité de nouveaux biomarqueurs afin de combler cette lacune. Dans cette optique nous nous intéressons au facteur de transcription NF-κB. Des études réalisées au laboratoire et ailleurs, associent RelA(p65) à un potentiel clinique dans le CaP, soulignant ainsi l’importance de la voie classique NF-κB. L’implication de la voie alternative NF-κB dans la progression du CaP a aussi été suggérée dans une de nos études illustrant la corrélation entre la distribution nucléaire de RelB et le score de Gleason. Alors que la voie classique est largement documentée et son implication dans la progression du CaP établie, la voie alternative, elle, reste à explorer. La présente thèse vise à clarifier l’implication de la voie alternative NF-κB dans le CaP et répond à deux objectifs fixés dans ce but. Le premier objectif fut d’évaluer l’impact de l'activation de la voie alternative NF-κB sur la biologie des cellules cancéreuses prostatiques. L’étude de la surexpression de RelB a souligné les effets de la voie alternative NF-κB sur la prolifération et l'autophagie. Étant ainsi impliquée tant dans la croissance tumorale que dans un processus de plus en plus associée à la progression tumorale, quoique potentiellement létal pour les cellules cancéreuses, son impact sur la tumorigénèse du CaP reste encore difficile à définir. Il n'existe, à ce jour, aucune étude permettant de comparer le potentiel clinique des voies classique et alternative NF-κB. Le second objectif de ce projet fut donc l'analyse conjointe de RelA(p65) et RelB au sein de mêmes tissus de patients atteints de CaP afin de déterminer l'importance clinique des deux signalisations NF-κB, l'une par rapport à l'autre. Le marquage immunofluorescent de RelA(p65) et RelB en a permis l'analyse quantitative et objective par un logiciel d'imagerie. Nos travaux ont confirmé le potentiel clinique associé à RelA(p65). La variable RelA(p65)/RelB s’est, elle, avérée moins informative que RelA(p65). Par contre, aucune corrélation entre RelB et les paramètres cliniques inclus dans l'étude n’est ressortie. En définitive, mon projet de thèse aura permis de préciser l'implication de la voie alternative NF-κB sur la biologie du CaP. Son impact sur la croissance des cellules cancéreuses prostatiques ainsi que sur l'autophagie, dénote l’ambivalence de la voie alternative NF-κB face à la tumorigénèse du CaP. L’étude exhaustive de la signalisation NF-κB souligne davantage l'importance de la voie classique dont l’intérêt clinique est principalement associé au statut de RelA(p65). Ainsi, bien que RelB n’affiche aucun potentiel en tant que biomarqueur exploitable en clinique, l’analyse de l’intervention de la voie alternative NF-κB sur la biologie des cellules cancéreuses prostatiques reste d’intérêt pour la compréhension de son rôle exact dans la progression du CaP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: La circulation extracorporelle (CEC) peut entraîner une dysfonction endothéliale pulmonaire et l’hypertension pulmonaire. Le SN50 agit au niveau de la signalisation cellulaire pour prévenir ces réactions à la CEC et pourrait renverser la dysfonction endothéliale pulmonaire post-CEC sans effets néfastes sur l’hémodynamie. Méthodes: Quatre groups de porcs ont reçu un parmi quatre traîtements avant de subir 90 minutes de CEC et 60 minutes de reperfusion: (1) milrinone nébulisé; (2) sildenafil nébulisé; (3) placebo nébulisé; et (4) SN-50 intraveineux. Un monitoring hémodynamique invasif a été utilisé. La réactivité vasculaire des artères pulmonaires de deuxième ordre a été évaluée face à l’acétylcholine et la bradykinine. Résultats: Le sildénafil produit une augmentation significative de la pression de l’artère pulmonaire (PAP) moyenne à 60 minutes de reperfusion par rapport au début de la chirurgie. Les relaxations dépendantes de l’endothélium face à la bradykinine étaient meilleurs dans les groupes milrinone et SN-50 et surtout dans le groupe sildénafil par rapport au groupe placébo. Le SN-50 produisait de moins bonnes relaxations dépendantes de l’endothélium face à l’acétylcholine que les autres traitements incluant placébo. Conclusion: Le sildénafil prévient mieux la dysfonction endothéliale pulmonaire que les autres traitements. Les bénéfices du SN-50 sont possiblement sous-estimés vu que la dose n’a pas pu être ajustée à la durée de CEC. Le sildenafil inhalé mérite une étude plus importante chez l’humain et le SN-50 dans un model de CEC animal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A survey against the draft genome sequence and the cDNA/EST database of Ciona intestinalis identified a number of genes encoding transcription factors regulating a variety of processes including development. In the present study, we describe almost complete sets of genes for Fox, ETS-domain transcription factors, nuclear receptors, and NFkappaB as well as other factors regulating NFkappaB activity, with their phylogenetic nature. Vertebrate Fox transcription factors are currently delineated into 17 subfamilies: FoxA to FoxQ. The present survey yielded 29 genes of this family in the Ciona genome, 24 of which were Ciona orthologues of known Fox genes. In addition, we found 15 ETS aenes, 17 nuclear receptor genes, and several NFkappaB signaling pathway genes in the Ciona genome. The number of Ciona genes in each family is much smaller than that of vertebrates, which represents a simplified feature of the ascidian genome. For example, humans have two NFkappaB genes, three Rel genes, and five NFAT genes, while Ciona has one gene for each family. The Ciona genome also contains smaller numbers of genes for the NFkappaB regulatory system, i.e. after the split of ascidians/vertebrates, vertebrates evolved a more complex NFkappaB system. The present results therefore provide molecular information for the investigation of complex developmental processes, and an insight into chordate evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Peroxynitrite (ONOO-) is formed in the inflamed and degenerating human joint. Peroxynitrite-modified collagen-II (PMC-II) was recently discovered in the serum of patients with osteoarthritis (OA) and rheumatoid arthritis (RA). Therefore we investigated the cellular effects of PMC-II on human mesenchymal progenitor cells (MPCs) as a model of cartilage and cartilage repair cells in the inflamed and degenerating joint. Design: MPCs were isolated from the trabecular bone of patients undergoing reconstructive surgery and were differentiated into a chondrogenic lineage. Cells were exposed to PMC-II and levels of the proinflammatory mediators nitric oxide (NO) and prostaglandin E-2 (PGE(2)) measured. Levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), phosphorylated mitogen activated protein kinases (MAPKs) and nuclear factor kappa B (NF-kappa B) activation were measured by enzyme linked immunosorbent assay (ELISA) together with specific MAPK and NF-kappa B inhibitors. Results: PMC-II induced NO and PGE(2) synthesis through upregulation of iNOS and COX-2 proteins. PMC-II also lead to the phosphorylation of MAPKs, extracellularly regulated kinase 1/2 (ERK1/2) and p38 [but not c-Jun NH2-terminal kinase (JNK1/2)] and the activation of proinflammatory transcription factor NF-kappa B. Inhibitors of p38, ERK1/2 and NF-kappa B prevented PMC-II induced NO and PGE(2) synthesis, NOS and COX-2 protein expression and NF-kappa B activation. Conclusion: iNOS, COX-2, NF-KB and MAPK are known to be activated in the joints of patients with OA and RA. PMC-II induced iNOS and COX-2 synthesis through p38, ERK1/2 and NF-KB dependent pathways suggesting a previously unidentified pathway for the synthesis of the proinflammatory mediators, NO and PGE(2), further suggesting that inhibitors of these pathways may be therapeutic in the inflamed and degenerating human joint. (c) 2005 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In mammals, the production of melatonin by the pineal gland is mainly controlled by the suprachiasmatic nuclei (SCN), the master clock of the circadian system. We have previously shown that agents involved in inflammatory responses, such as cytokines and corticosterone, modulate pineal melatonin synthesis. The nuclear transcription factor NFKB, detected by our group in the rat pineal gland, modulates this effect. Here, we evaluated a putative constitutive role for the pineal gland NFKB pathway. Male rats were kept under 12 h: 12 h light-dark (LD) cycle or under constant darkness (DD) condition. Nuclear NFKB was quantified by electrophoretic mobility shift assay on pineal glands obtained from animals killed throughout the day at different times. Nuclear content of NFKB presented a daily rhythm only in LD-entrained animals. During the light phase, the amount of NFKB increased continuously, and a sharp drop occurred when lights were turned off. Animals maintained in a constant light environment until ZT 18 showed diurnal levels of nuclear NFKB at ZT15 and ZT18. Propranolol (20 mg/kg, i.p., ZT 11) treatment, which inhibits nocturnal sympathetic input, impaired nocturnal decrease of NFKB only at ZT18. A similar effect was observed in free-running animals, which secreted less nocturnal melatonin. Because melatonin reduces constitutive NFKB activation in cultured pineal glands, we propose that this indolamine regulates this transcription factor pathway in the rat pineal gland, but not at the LD transition. The controversial results regarding the inhibition of pineal function by constant light or blocking sympathetic neurotransmission are discussed according to the hypothesis that the prompt effect of lights-off is not mediated by noradrenaline, which otherwise contributes to maintaining low levels of nuclear NFKB at night. In summary, we report here a novel transcription factor in the pineal gland, which exhibits a constitutive rhythm dependent on environmental photic information. (Author correspondence: rpmarkus@usp.br)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amyloid P-peptide (A beta) likely causes functional alterations in neurons well prior to their death. Nuclear factor-kappa B (NF-kappa B), a transcription factor that is known to play important roles in cell survival and apoptosis, has been shown to be modulated by A beta in neurons and glia, but the mechanism is unknown. Because A beta has also been shown to enhance activation of N-methyl-D-aspartate (NMDA) receptors, we investigated the role of NMDA receptor-mediated intracellular signaling pathways in A beta-induced NF-kappa B activation in primary cultured rat cerebellar cells. Cells were treated with different concentrations of A beta 1-40 (1 or 2 mu M) for different periods (6, 12, or 24 hr). MK-801 (NMDA antagonist), manumycin A and FTase inhibitor 1 (farnesyltransferase inhibitors), PP1 (Src-family tyrosine kinase inhibitor), PD98059 [mitogen-activated protein kinase (MAPK) inhibitor], and LY294002 [phosphatidylinositol 3-kinase (PI3-k) inhibitor] were added 20 min before A beta treatment of the cells. A beta induced a time- and concentration-dependent activation of NF-kappa B (1 mu M, 12 hr); both p50/p65 and p50/p50 NF-kappa B dimers were involved. This activation was abolished by MK-801 and attenuated by manumycin A, FTase inhibitor 1, PP1, PD98059, and LY294002. AP at 1 mu M increased the expression of inhibitory protein I kappa B, brain-derived neurotrophic factor, inducible nitric oxide synthase, tumor necrosis factor-alpha, and interleukin-1 beta as shown by RTPCR assays. Collectively, these findings suggest that AP activates NF-kappa B by an NMDA-Src-Ras-like protein through MAPK and PI3-k pathways in cultured cerebellar cells. This pathway may mediate an adaptive, neuroprotective response to A beta. (c) 2007 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of septic shock is a common and frequently lethal consequence of gram-negative infection. Mediators released by lung macrophages activated by bacterial products such as lipopolysaccharide (LPS) contribute to shock symptoms. We have shown that insulin downregulates LPS-induced TNF production by alveolar macrophages (AMs). In the present study, we investigated the effect of insulin on the LPS-induced production of nitric oxide (NO) and prostaglandin (PG)-E(2), on the expression of inducible nitric oxide synthase ( iNOS) and cyclooxygenase (COX)-2, and on nuclear factor kappa B (NF-kappa B) activation in AMs. Resident AMs from male Wistar rats were stimulated with LPS (100 ng/mL) for 30 minutes. Insulin (1 mU/mL) was added 10 min before LPS. Enzymes expression, NF-kappa B p65 activation and inhibitor of kappa B (I-kappa B) a phosphorylation were assessed by immunobloting; NO by Griess reaction and PGE(2) by enzyme immunoassay (EIA). LPS induced in AMs the expression of iNOS and COX-2 proteins and production of NO and PGE(2), and, in parallel, NF-kappa B p65 activation and cytoplasmic I-kappa B alpha phosphorylation. Administration of insulin before LPS suppressed the expression of iNOS and COX-2, of NO and PGE(2) production and Nuclear NF-kappa B p65 activation. Insulin also prevented cytoplasmic I-kappa Ba phosphorylation. These results show that in AMs stimulated by LPS, insulin prevents nuclear translocation of NF-kappa B, possibly by blocking I-kappa Ba degradation, and supresses the production of NO and PGE(2), two molecules that contribute to septic shock. Copyright (C) 2008 S. Karger AG, Basel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetic patients have increased susceptibility to infection, which may be related to impaired inflammatory response observed in experimental models of diabetes, and restored by insulin treatment. The goal of this study was to investigate whether insulin regulates transcription of cytokines and intercellular adhesion molecule 1 (ICAM-1) via nuclear factor-kappa B (NF-kappa B) signaling pathway in Escherichia coli LIPS-induced lung inflammation. Diabetic male Wistar rats (alloxan, 42 mg/kg, iv., 10 days) and controls were instilled intratracheally with saline containing LPS (750 mu g/0.4 mL) or saline only. Some diabetic rats were given neutral protamine Hagedorn insulin (4 IU, s.c.) 2 h before LIPS. Analyses performed 6 h after LPS included: (a) lung and mesenteric lymph node IL-1 beta, TNF-alpha, IL-10, and ICAM-1 messenger RNA (mRNA) were quantified by real-time reverse transcriptase-polymerase chain reaction; (b) number of neutrophils in the bronchoalveolar lavage (BAL) fluid, and concentrations of IL-1 beta, TNF-alpha, and IL-10 in the BAL were determined by the enzyme-linked immunosorbent assay; and (c) activation of NF-kappa B p65 subunit and phosphorylation of I-kappa B alpha were quantified by Western blot analysis. Relative to controls, diabetic rats exhibited a reduction in lung and mesenteric lymph node IL-1 beta (40%), TNF-alpha (similar to 30%), and IL-10 (similar to 40%) mRNA levels and reduced concentrations of IL-1 beta (52%), TNF-alpha (62%), IL-10 (43%), and neutrophil counts (72%) in the BAL. Activation of NF-kappa B p65 subunit and phosphorylation of I-kappa B alpha were almost suppressed in diabetic rats. Treatment of diabetic rats with insulin completely restored mRNA and protein levels of these cytokines and potentiated lung ICAM-1 mRNA levels (30%) and number of neutrophils (72%) in the BAL. Activation of NF-kappa B p65 subunit and phosphorylation of I-kappa B alpha were partially restored by insulin treatment. In conclusion, data presented suggest that insulin regulates transcription of proinflammatory (IL-1 beta, TNF-alpha) and anti-inflammatory (IL-10) cytokines, and expression of ICAM-1 via the NF-kappa B signaling pathway.