953 resultados para Ischemic tissue injury


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Inadequate blood flow to an organ, ischaemia, may lead to both local and remote tissue injury characterized by oedema, increased microvascular permeability to protein and degradation of connective tissue components. This damage is probably caused by the accumulation and inappropriate activation of neutrophils which occurs when the tissue is reperfused. To test this hypothesis a number of in vitro models of the sequential stages of ischaemia/reperfusion injury were examined. Methods were initially developed to examine the adhesion of neutrophils to monolayers of a cultured endothelial cell line (ECV304) after periods of hypoxia and reoxygenation. Neutrophil migration in response to factors secreted by the treated endothelial cells was then assessed. The genesis of an inappropriate oxidative burst by the neutrophil upon exposure to endothelial chemoattractants and adhesion molecules was also measured. Finally to appraise how tissue function might be affected by endothelial cell hypoxia the contractility of vascular smooth muscle was examined. Neutrophil adhesion to ECV304 cells, which had been hypoxic for 4 hours and then reoxygenated for 30 minutes, was significantly increased. This response was probably initiated by reactive oxygen species (ROS) generated by the endothelial cells. Blockage of their production by allopurinol reduced the heightened adhesion. Similarly removal of ROS by superoxide dismutase or catalase also attenuated adhesion. ROS generation in turn caused the release of a soluble factor (s) which induced a conformational change on the neutrophil surface allowing it to bind to the intercellular adhesion molecule 1 (ICAM-1) on the endothelial cell. Soluble factor (s) from hypoxia/reoxygenated endothelial cells also had a powerful neutrophil chemoattractant ability. When neutrophils were exposed to both hypoxic/reoxygenated endothelial cells and the soluble factor (s) released by them a large oxidative burst was elicited. This response was greatest immediately after reoxygenation and one hour later was diminishing suggesting at least one of the components involved was labile. Analysis of the supernatant from hypoxic/reoxygenated endothelial cell cultures and studies using inhibitors of secretion suggested platelet activating factor (PAF) may be a major component in this overall sequence of events. Lesser roles for IL-8, TNF and LTB4 were also suggested. The secretory products from hypoxia/reoxygenated endothelial cells also affected smooth muscle contractility having an anti-vasoconstrictor or relaxation property, similar to that exerted by PAF.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Myocardial infarction results in loss of cardiac muscle and deficiency in cardiac performance. Likewise, peripheral artery disease can result in critical limb ischemia leading to reduced mobility, non-healing ulcers, gangrene and amputation. Both of these common conditions diminish quality of life and enhance risk of mortality. Successful advances in treatment have led to more people surviving incidences of myocardial infarction or living with peripheral artery disease. However, the current treatments are inadequate in repairing ischemic tissue. Over the last 5 years, a vast number of patents have been submitted concerning the use of stem cells, which correlates with the exponential growth in stem cell publications. Exploiting stem cell therapy offers a real potential in replacing ischemic tissue with functional cells. In this paper, we review recent patents concerning stem cell therapy that have the potential to provide or potentiate novel treatment for ischemic cardiovascular disease. In addition, we evaluate the promise of the inventions by describing some clinical trials that are currently taking place, as well as considering how current research on ischemic cardiovascular disease may change the patent landscape in the future.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Accurately assessing the extent of myocardial tissue injury induced by Myocardial infarction (MI) is critical to the planning and optimization of MI patient management. With this in mind, this study investigated the feasibility of using combined fluorescence and diffuse reflectance spectroscopy to characterize a myocardial infarct at the different stages of its development. An animal study was conducted using twenty male Sprague-Dawley rats with MI. In vivo fluorescence spectra at 337 nm excitation and diffuse reflectance between 400 nm and 900 nm were measured from the heart using a portable fiber-optic spectroscopic system. Spectral acquisition was performed on (1) the normal heart region; (2) the region immediately surrounding the infarct; and (3) the infarcted region—one, two, three and four weeks into MI development. The spectral data were divided into six subgroups according to the histopathological features associated with various degrees/severities of myocardial tissue injury as well as various stages of myocardial tissue remodeling, post infarction. Various data processing and analysis techniques were employed to recognize the representative spectral features corresponding to various histopathological features associated with myocardial infarction. The identified spectral features were utilized in discriminant analysis to further evaluate their effectiveness in classifying tissue injuries induced by MI. In this study, it was observed that MI induced significant alterations (p < 0.05) in the diffuse reflectance spectra, especially between 450 nm and 600 nm, from myocardial tissue within the infarcted and surrounding regions. In addition, MI induced a significant elevation in fluorescence intensities at 400 and 460 nm from the myocardial tissue from the same regions. The extent of these spectral alterations was related to the duration of the infarction. Using the spectral features identified, an effective tissue injury classification algorithm was developed which produced a satisfactory overall classification result (87.8%). The findings of this research support the concept that optical spectroscopy represents a useful tool to non-invasively determine the in vivo pathophysiological features of a myocardial infarct and its surrounding tissue, thereby providing valuable real-time feedback to surgeons during various surgical interventions for MI.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent decades, the rapid development of optical spectroscopy for tissue diagnosis has been indicative of its high clinical value. The goal of this research is to prove the feasibility of using diffuse reflectance spectroscopy and fluorescence spectroscopy to assess myocardial infarction (MI) in vivo. The proposed optical technique was designed to be an intra-operative guidance tool that can provide useful information about the condition of an infarct for surgeons and researchers. ^ In order to gain insight into the pathophysiological characteristics of an infarct, two novel spectral analysis algorithms were developed to interpret diffuse reflectance spectra. The algorithms were developed based on the unique absorption properties of hemoglobin for the purpose of retrieving regional hemoglobin oxygenation saturation and concentration data in tissue from diffuse reflectance spectra. The algorithms were evaluated and validated using simulated data and actual experimental data. ^ Finally, the hypothesis of the study was validated using a rabbit model of MI. The mechanism by which the MI was induced was the ligation of a major coronary artery of the left ventricle. Three to four weeks after the MI was induced, the extent of myocardial tissue injury and the evolution of the wound healing process were investigated using the proposed spectroscopic methodology as well as histology. The correlations between spectral alterations and histopathological features of the MI were analyzed statistically. ^ The results of this PhD study demonstrate the applicability of the proposed optical methodology for assessing myocardial tissue damage induced by MI in vivo. The results of the spectral analysis suggest that connective tissue proliferation induced by MI significantly alter the characteristics of diffuse reflectance and fluorescence spectra. The magnitudes of the alterations could be quantitatively related to the severity and extensiveness of connective tissue proliferation.^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Accurately assessing the extent of myocardial tissue injury induced by Myocardial infarction (MI) is critical to the planning and optimization of MI patient management. With this in mind, this study investigated the feasibility of using combined fluorescence and diffuse reflectance spectroscopy to characterize a myocardial infarct at the different stages of its development. An animal study was conducted using twenty male Sprague-Dawley rats with MI. In vivo fluorescence spectra at 337 nm excitation and diffuse reflectance between 400 nm and 900 nm were measured from the heart using a portable fiber-optic spectroscopic system. Spectral acquisition was performed on - (1) the normal heart region; (2) the region immediately surrounding the infarct; and (3) the infarcted region - one, two, three and four weeks into MI development. The spectral data were divided into six subgroups according to the histopathological features associated with various degrees / severities of myocardial tissue injury as well as various stages of myocardial tissue remodeling, post infarction. Various data processing and analysis techniques were employed to recognize the representative spectral features corresponding to various histopathological features associated with myocardial infarction. The identified spectral features were utilized in discriminant analysis to further evaluate their effectiveness in classifying tissue injuries induced by MI. In this study, it was observed that MI induced significant alterations (p < 0.05) in the diffuse reflectance spectra, especially between 450 nm and 600 nm, from myocardial tissue within the infarcted and surrounding regions. In addition, MI induced a significant elevation in fluorescence intensities at 400 and 460 nm from the myocardial tissue from the same regions. The extent of these spectral alterations was related to the duration of the infarction. Using the spectral features identified, an effective tissue injury classification algorithm was developed which produced a satisfactory overall classification result (87.8%). The findings of this research support the concept that optical spectroscopy represents a useful tool to non-invasively determine the in vivo pathophysiological features of a myocardial infarct and its surrounding tissue, thereby providing valuable real-time feedback to surgeons during various surgical interventions for MI.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research project involved two studies aimed to determine whether drivers who have experienced a traffic crash resulting in a Whiplash Associated Disorder (WAD) are at an elevated risk of a subsequent traffic crash. Using data and records held by the Queensland Motor Accident Insurance Commission (MAIC) and Queensland Transport Crash Database (QTCD) the first study examined the crash involvement of two samples of drivers subsequent to a crash in which a compensable injury was incurred. One sample was of persons who had suffered a WAD, the second of persons with a soft tissue injury of equivalent severity. Since differentially altered driving exposure following the relevant injury in the two groups could be a potential confound, in the second study such exposure was estimated using survey data obtained from a sample of similarly injured drivers. These studies were supplemented by a brief analysis of qualitative data drawn from open-ended questions in the survey. In addition a comprehensive review of the literature on impaired driving due to similar medical conditions was undertaken and is reported.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The future on-road safety of drivers affected by Whiplash Associated Disorder (WAD), the most common soft-tissue injury suffered in a traffic crash, has not been extensively explored. We obtained an anonymised file of 4280 insurance claimants with WAD and, as controls, 1116 claimants with comparably severe soft-tissue injuries who are considered to be at no increased risk than the general population. Their demographic information, road user type and traffic crash records both prior and subsequent to the traffic incident in which the injury occurred, the index crash, were obtained. Rates of subsequent crash involvement in these two groups were then compared, adjusting for age, sex, road user type and prior crash experience. The risk of a subsequent crash in the WAD group relative to controls was 1.14 (95% confidence interval, 0.87–1.48). To allow for differentially altered driving exposure after index crash we distributed a brief survey asking about changes in driving habits after a traffic crash involving injury via physiotherapy clinics and online through the electronic newsletter of a local motoring organisation. The survey yielded responses from 113 drivers who had experienced WAD in a traffic crash and 53 with other soft tissue injuries. There were no differences on average between the groups in their prior driving levels or their percentage change therein at one, three or six months after injury. There was thus no evidence that drivers with WAD are at any higher safety risk than drivers with other types of relatively minor post-crash soft tissue injury.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose The majority of cancer patients will receive radiotherapy (RT), therefore, investigations into advances of this modality are important. Conventional RT dose intensities are limited by adverse responses in normal tissues and a primary goal is to ameliorate adverse normal tissue effects. The aim of these experiments is to further our understanding regarding the mechanism of radioprotection by the DNA minor groove binder, methylproamine, in a cellular context at the DNA level. Materials and methods We used immunocytochemical methods to measure the accumulation of phosphorylated H2AX (γH2AX) foci following ionizing radiation (IR) in patient-derived lymphoblastoid cells exposed to methylproamine. Furthermore, we performed pulsed field gel electrophoresis DNA damage and repair assays to directly interrogate the action of methylproamine on DNA in irradiated cells. Results We found that methylproamine-treated cells had fewer γH2AX foci after IR compared to untreated cells. Also, the presence of methylproamine decreased the amount of lower molecular weight DNA entering the gel as shown by the pulsed field gel electrophoresis assay. Conclusions These results suggest that methylproamine acts by preventing the formation of DNA double-strand breaks (dsbs) and support the hypothesis that radioprotection by methylproamine is mediated, at least in part, by decreasing initial DNA damage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A major drawback to the immunological potency of conventional vaccines, resulting in reduced level of immune responses, tissue injury, shock and high cytotoxicity, thus making their applications contraindicated in immunodeficiency diseases, is the presence of high contaminant concentrations in vaccine titers. Vaccine contamination arises from the simultaneous occurrence of competitive pathways resulting in the formation of other bio-products during cellular metabolism aside the pathways necessary for the production of vaccine molecules. One of such vaccine contaminating molecules is endotoxins which are mainly lipopolysaccharides (LPS) complexes found in the membrane of bacterial cell wall. The structural dynamics of these molecules make their removal from vaccine titers problematic, thus making vaccine endotoxin removal a major research endeavour. This presentation will discuss a novel technique for reducing the endotoxin level of vaccines. The technique commences with the disentanglement of endotoxin-vaccine molecular bonding and then capturing the vaccine molecules on an affinity monolith to separate the vaccine molecules from the endotoxins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The outcome of the successfully resuscitated patient is mainly determined by the extent of hypoxic-ischemic cerebral injury, and hypothermia has multiple mechanisms of action in mitigating such injury. The present study was undertaken from 1997 to 2001 in Helsinki as a part of the European multicenter study Hypothermia after cardiac arrest (HACA) to test the neuroprotective effect of therapeutic hypothermia in patients resuscitated from out-of-hospital ventricular fibrillation (VF) cardiac arrest (CA). The aim of this substudy was to examine the neurological and cardiological outcome of these patients, and especially to study and develop methods for prediction of outcome in the hypothermia-treated patients. A total of 275 patients were randomized to the HACA trial in Europe. In Helsinki, 70 patients were enrolled in the study according to the inclusion criteria. Those randomized to hypothermia were actively cooled externally to a core temperature 33 ± 1ºC for 24 hours with a cooling device. Serum markers of ischemic neuronal injury, NSE and S-100B, were sampled at 24, 36, and 48 hours after CA. Somatosensory and brain stem auditory evoked potentials (SEPs and BAEPs) were recorded 24 to 28 hours after CA; 24-hour ambulatory electrocardiography recordings were performed three times during the first two weeks and arrhythmias and heart rate variability (HRV) were analyzed from the tapes. The clinical outcome was assessed 3 and 6 months after CA. Neuropsychological examinations were performed on the conscious survivors 3 months after the CA. Quantitative electroencephalography (Q-EEG) and auditory P300 event-related potentials were studied at the same time-point. Therapeutic hypothermia of 33ºC for 24 hours led to an increased chance of good neurological outcome and survival after out-of-hospital VF CA. In the HACA study, 55% of hypothermia-treated patients and 39% of normothermia-treated patients reached a good neurological outcome (p=0.009) at 6 months after CA. Use of therapeutic hypothermia was not associated with any increase in clinically significant arrhythmias. The levels of serum NSE, but not the levels of S-100B, were lower in hypothermia- than in normothermia-treated patients. A decrease in NSE values between 24 and 48 hours was associated with good outcome at 6 months after CA. Decreasing levels of serum NSE but not of S-100B over time may indicate selective attenuation of delayed neuronal death by therapeutic hypothermia, and the time-course of serum NSE between 24 and 48 hours after CA may help in clinical decision-making. In SEP recordings bilaterally absent N20 responses predicted permanent coma with a specificity of 100% in both treatment arms. Recording of BAEPs provided no additional benefit in outcome prediction. Preserved 24- to 48-hour HRV may be a predictor of favorable outcome in CA patients treated with hypothermia. At 3 months after CA, no differences appeared in any cognitive functions between the two groups: 67% of patients in the hypothermia and 44% patients in the normothermia group were cognitively intact or had only very mild impairment. No significant differences emerged in any of the Q-EEG parameters between the two groups. The amplitude of P300 potential was significantly higher in the hypothermia-treated group. These results give further support to the use of therapeutic hypothermia in patients with sudden out-of-hospital CA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lupus erythematosus (LE) is a chronic, heterogeneous autoimmune disorder with abnormal immune responses, including production of autoantibodies and immune complexes. Clinical presentations of the disease range from mild cutaneous manifestations to a more generalised systemic involvement of internal organs. Cutaneous (CLE) forms are further subclassified into discoid LE (DLE), subacute cutaneous LE (SCLE) and acute cutaneous lupus erythematosus (ACLE), and may later progress to systemic disease (SLE). Both genetic and environmental factors contribute to the disease, although the precise aetiology is still elusive. Furthermore, complex gene-gene or gene-environment interactions may result in different subphenotypes of lupus. The genetic background of CLE is poorly known and only a few genes are confirmed, while the number of robust genetic associations in SLE exceeds 30. The aim of this thesis was to characterise the recruited patients clinically, and identify genetic variants conferring susceptibility to cutaneous variants of LE. Given that cutaneous and systemic disease may share underlying genetic factors, putative CLE candidate genes for genotyping were selected among those showing strong evidence of association in SLE. The correlation between relevant clinical manifestations and risk genotypes was investigated in order to find specific subphenotype associations. In addition, epistatic interactions in SLE were studied. Finally, the role of tissue degrading matrix metalloproteinases (MMP) in LE tissue injury was explored. These studies were conducted in Finnish case-control and family cohort, and Swedish case-control cohort. The clinical picture of the patients in terms of cutaneous, haematological and immunological findings resembled that described in the contemporary literature. However, the proportion of daily smokers was very high supporting the role of smoking in disease aetiology. The results confirmed that, even though clinically distinct entities, CLE and SLE share predisposing genetic factors. For the first time it was shown that known SLE susceptibility genes IRF5 and TYK2 also increase the risk of CLE. A tendency toward gene-gene interaction between these genes was found in SLE. As a remarkable novel finding, it was observed that ITGAM polymorphisms associated even more strongly to DLE than SLE, and the risk estimates were substantially higher than those reported for SLE. Several other recently identified SLE susceptibility genes showed signs of good or modest association especially in DLE. Subphenotype analyses indicated possible associations to clinical features, but marginally significant results reflected lack of sufficient power for these studies. Thorough immunohistochemical analyses of several MMPs demonstrated a role in epidermal changes and dermal tissue remodelling in diseased skin, and suggested that targeted action using selective MMP inhibitors may reduce lupus-induced damage in inflamed tissues. In conclusion, the results provide an insight into the genetics of CLE and demonstrate that genetic predisposition is at least in part shared between cutaneous and systemic variants of LE. This doctoral study has contributed IRF5, TYK2, ITGAM and several other novel genes to the so far short list of genes implicated in CLE susceptibility. Detailed examination of the function of these genes in CLE pathogenesis warrants further studies. Furthermore, the results support the need of subphenotype analysis with sample sizes large enough to reveal possible specific disease associations in order to better understand the heterogeneous nature and clinical specificities of the disease. Comprehensive analysis of clinical data suggests that smoking is an environmental triggering factor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Iodothyronine deiodinases are selenoenzymes which regulate the thyroid hormone homeostasis by catalyzing the regioselective deiodination of thyroxine (T4). Synthetic deiodinase mimetics are important not only to understand the mechanism of enzyme catalysis, but also to develop therapeutic agents as abnormal thyroid hormone levels have implications in different diseases, such as hypoxia, myocardial infarction, critical illness, neuronal ischemia, tissue injury, and cancer. Described herein is that the replacement of sulfur/selenium atoms in a series of deiodinase mimetics by tellurium remarkably alters the reactivity as well as regioselectivity toward T4. The tellurium compounds reported in this paper represent the first examples of deiodinase mimetics which mediate sequential deiodination of T4 to produce all the hormone derivatives including T0 under physiologically relevant conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As the worldwide prevalence of diabetes mellitus continues to increase, diabetic retinopathy remains the leading cause of visual impairment and blindness in many developed countries. Between 32 to 40 percent of about 246 million people with diabetes develop diabetic retinopathy. Approximately 4.1 million American adults 40 years and older are affected by diabetic retinopathy. This glucose-induced microvascular disease progressively damages the tiny blood vessels that nourish the retina, the light-sensitive tissue at the back of the eye, leading to retinal ischemia (i.e., inadequate blood flow), retinal hypoxia (i.e., oxygen deprivation), and retinal nerve cell degeneration or death. It is a most serious sight-threatening complication of diabetes, resulting in significant irreversible vision loss, and even total blindness.

Unfortunately, although current treatments of diabetic retinopathy (i.e., laser therapy, vitrectomy surgery and anti-VEGF therapy) can reduce vision loss, they only slow down but cannot stop the degradation of the retina. Patients require repeated treatment to protect their sight. The current treatments also have significant drawbacks. Laser therapy is focused on preserving the macula, the area of the retina that is responsible for sharp, clear, central vision, by sacrificing the peripheral retina since there is only limited oxygen supply. Therefore, laser therapy results in a constricted peripheral visual field, reduced color vision, delayed dark adaptation, and weakened night vision. Vitrectomy surgery increases the risk of neovascular glaucoma, another devastating ocular disease, characterized by the proliferation of fibrovascular tissue in the anterior chamber angle. Anti-VEGF agents have potential adverse effects, and currently there is insufficient evidence to recommend their routine use.

In this work, for the first time, a paradigm shift in the treatment of diabetic retinopathy is proposed: providing localized, supplemental oxygen to the ischemic tissue via an implantable MEMS device. The retinal architecture (e.g., thickness, cell densities, layered structure, etc.) of the rabbit eye exposed to ischemic hypoxic injuries was well preserved after targeted oxygen delivery to the hypoxic tissue, showing that the use of an external source of oxygen could improve the retinal oxygenation and prevent the progression of the ischemic cascade.

The proposed MEMS device transports oxygen from an oxygen-rich space to the oxygen-deficient vitreous, the gel-like fluid that fills the inside of the eye, and then to the ischemic retina. This oxygen transport process is purely passive and completely driven by the gradient of oxygen partial pressure (pO2). Two types of devices were designed. For the first type, the oxygen-rich space is underneath the conjunctiva, a membrane covering the sclera (white part of the eye), beneath the eyelids and highly permeable to oxygen in the atmosphere when the eye is open. Therefore, sub-conjunctival pO2 is very high during the daytime. For the second type, the oxygen-rich space is inside the device since pure oxygen is needle-injected into the device on a regular basis.

To prevent too fast or too slow permeation of oxygen through the device that is made of parylene and silicone (two widely used biocompatible polymers in medical devices), the material properties of the hybrid parylene/silicone were investigated, including mechanical behaviors, permeation rates, and adhesive forces. Then the thicknesses of parylene and silicone became important design parameters that were fine-tuned to reach the optimal oxygen permeation rate.

The passive MEMS oxygen transporter devices were designed, built, and tested in both bench-top artificial eye models and in-vitro porcine cadaver eyes. The 3D unsteady saccade-induced laminar flow of water inside the eye model was modeled by computational fluid dynamics to study the convective transport of oxygen inside the eye induced by saccade (rapid eye movement). The saccade-enhanced transport effect was also demonstrated experimentally. Acute in-vivo animal experiments were performed in rabbits and dogs to verify the surgical procedure and the device functionality. Various hypotheses were confirmed both experimentally and computationally, suggesting that both the two types of devices are very promising to cure diabetic retinopathy. The chronic implantation of devices in ischemic dog eyes is still underway.

The proposed MEMS oxygen transporter devices can be also applied to treat other ocular and systemic diseases accompanied by retinal ischemia, such as central retinal artery occlusion, carotid artery disease, and some form of glaucoma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O gênero Leishmania é responsável por um grupo de parasitoses que podem variar desde lesões auto-limitadas até severa injúria de tecido. Estes protozoários são parasitos obrigatoriamente intracelulares, tendo o macrófago como célula hospedeira. Durante o processo de fagocitose os macrófagos utilizam a maquinaria presente em seu citoesqueleto, a qual compreende a participação de miosinas e actinas, para a formação do fagossoma. Estas proteínas estão envolvidas em processos como citocinese, tráfego intracelular de organelas e vesículas, podendo interferir com a penetração do parasito. Alguns trabalhos vêm sendo realizados visando analisar a expressão, localização e o papel de miosina e de actina em Leishamania. Estudos associados à participação destas proteínas motoras em processo vitais para a biologia do parasito podem auxiliar na compreensão de seu ciclo e permitir a geração de conhecimentos que apontem novos alvos para intervenções terapêuticas. Uma vez que a miosina é necessária no transporte intracelular, alguns estudos tentam analisar a expressão e a localização intracelular de miosinas na Leishmania. Estudos mostram a presença de atividades cinásicas do tipo CK2 em diversos tripanossomatídeos, ligadas ao crescimento celular, morfologia e infectividade de promastigotas para macrófagos. Desta maneira, como objetivo desta tese temos o estudo da participação das miosinas, actina e CK2 na infectividade da Leishmania braziliensis. Além disso, investigamos a influência destas proteínas na produção de citocinas pelos macrófagos e em sua atividade microbicida. Lipoxina, latrunculina, nocodazol e TBB promoveram uma inibição de, pelo menos, 50% no crescimento de L. braziliensis. A CK2 secretada pelo parasito foi purificada de seu sobrenadante através de coluna de HPLC e a fração 44 mostrou ser a fração correspondente a esta enzima. A lipoxina e o TBB promoveram a inibição da atividade desta enzima ao contrário da latrunculina que forneceu aumento dessa atividade. O pré-tratamento dos parasitos ou dos macrófagos com lipoxina, latrunculina, nocodazol e TBB promoveram uma inibição de cerca de 50% no índice de associação entre Leishmania e macrófagos não-ativados ou ativados por LPS e IFN-γ. Latrunculina e TBB aumentaram a produção de NO em macrófagos não ativados e não infectados enquanto que em macrófagos ativados à exceção do TBB, todas as drogas diminuíram a produção de NO. A liberação de IL-10 foi diminuída após tratamento com todas as drogas em macrófagos não ativados em ausência de promastigotas e ativados em presença do parasito. Para a produção de TNF-α há uma redução significativa em macrófagos ativados não infectados tratados com latrunculina, nocodazol e TBB. Quando ativados e infectados, os macrófagos tratados com lipoxina tiveram a produção dessa citocina aumentada, ao contrário do TBB em que houve redução. Quando avaliamos a integridade da actina verificamos que todos os compostos foram capazes de influenciar a distribuição dessa proteína, levando a uma redução no índice de associação. Ao transfectarmos a cauda da miosina Va fusionada a GFP nos macrófagos observamos que houve uma diminuição de 94% no índice de associação. Nossos dados confirmam a importância da CK2, actina e miosina Va no processo de interação parasito- macrófago.