958 resultados para Genetic and epigenetic alterations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Berlin high (BEH) and Berlin low (BEL) strains selected for divergent growth differ 3-fold in body weight. We aimed at examining muscle mass, which is a major contributor to body weight, by exploring anatomical characteristics of the soleus muscle, its fiber numbers and their cross sectional area (CSA), by analysing transcriptome of the gastrocnemius and by initiating quantitative trait locus (QTL) mapping. BEH muscles were 4-to-8 times larger compared to BEL strain. In sub-strain BEH+/+, mutant myostatin was replaced with a wild type allele, however, BEH+/+muscles still were 2-to-4 times larger compared to the BEL strain. BEH soleus contained 2-times more (P<0.0001) and 2-times larger in CSA (P<0.0001) fibers compared to BEL strain. In addition, soleus femoral attachment anomaly (SFAA) was observed in all BEL mice. One significant (chromosome 1) and four suggestive (chromosomes 3, 4, 6 and 9) muscle weight QTLs were mapped in 21-day old F2 intercross (n=296) between BEH and BEL strains. The frequency of SFAA incidence in the F2 and in the backcross to BEL strain (BCL) suggested the presence of more than one causative gene. Two suggestive SFAA QTLs were mapped in BCL, however, their peak markers were not associated with the phenotype in F2. RNA-Seq analysis revealed 2,148 differentially expressed (P<0.1) genes and 45,673 SNPs and >2,000 indels between BEH+/+ and BEL males. In conclusion, contrasting muscle traits, genomic and gene expression differences between BEH and BEL strains provide a promising model for the search of genes involved in muscle growth and musculoskeletal morphogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cladobotryum dendroides (= Dactylium dendroides) has hitherto been regarded as the major causal agent of cobweb disease of the cultivated mushroom, Agaricus bisporus. Nucleotide sequence data for the internal transcribed spacer (ITS) regions of four Cladobotryum/Hypomyces species reported to be associated with cobweb disease, however, indicate that the most common pathogen is now C. mycophilum. This cobweb pathogen varies somewhat in conidial septation from published descriptions of C. mycophilum and lacks the distinctive colony odor. ITS sequencing revealed minor nucleotide variation which split isolates of the pathogen into three subgroups, two comprising isolates that were sensitive to methylbenzimidazole carbamate (MBC) fungicides and one comprising MBC-resistant isolates. The MBC-resistant isolates, which were only obtained from Ireland and Great Britain, clustered together strongly in randomly amplified polymorphic DNA (RAPD) PCR analysis, suggesting that they may be clonal. The MBC-sensitive isolates were more diverse. A RAPD fragment of 800 to 900 bp, containing a microsatellite and found in the MBC-resistant isolates, also indicated their clonal nature; the microsatellites of these isolates contained the same number of GA repeats. Smaller, polymorphic microsatellites, similarly comprising GA repeats, in the MBC-sensitive isolates in general correlated with their geographic origin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene flow in macroalgal populations can be strongly influenced by spore or gamete dispersal. This, in turn, is influenced by a convolution of the effects of current flow and specific plant reproductive strategies. Although several studies have demonstrated genetic variability in macroalgal populations over a wide range of spatial scales, the associated current data have generally been poorly resolved spatially and temporally. In this study, we used a combination of population genetic analyses and high-resolution hydrodynamic modelling to investigate potential connectivity between populations of the kelp Laminaria digitata in the Strangford Narrows, a narrow channel characterized by strong currents linking the large semi-enclosed sea lough, Strangford Lough, to the Irish Sea. Levels of genetic structuring based on six microsatellite markers were very low, indicating high levels of gene flow and a pattern of isolation-by-distance, where populations are more likely to exchange migrants with geographically proximal populations, but with occasional long-distance dispersal. This was confirmed by the particle tracking model, which showed that, while the majority of spores settle near the release site, there is potential for dispersal over several kilometres. This combined population genetic and modelling approach suggests that the complex hydrodynamic environment at the entrance to Strangford Lough can facilitate dispersal on a scale exceeding that proposed for L. digitata in particular, and the majority of macroalgae in general. The study demonstrates the potential of integrated physical–biological approaches for the prediction of ecological changes resulting from factors such as anthropogenically induced coastal zone changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Late-onset Alzheimer's disease (AD) is heritable with 20 genes showing genome-wide association in the International Genomics of Alzheimer's Project (IGAP). To identify the biology underlying the disease, we extended these genetic data in a pathway analysis.

Methods: The ALIGATOR and GSEA algorithms were used in the IGAP data to identify associated functional pathways and correlated gene expression networks in human brain.

Results: ALIGATOR identified an excess of curated biological pathways showing enrichment of association. Enriched areas of biology included the immune response (P = 3.27 X 10(-12) after multiple testing correction for pathways), regulation of endocytosis (P = 1.31 X 10(-11)), cholesterol transport (P = 2.96 X 10(-9)), and proteasome-ubiquitin activity (P = 1.34 X 10(-6)). Correlated gene expression analysis identified four significant network modules, all related to the immune response (corrected P = .002-.05).

Conclusions: The immime response, regulation of endocytosis, cholesterol transport, and protein ubiquitination represent prime targets for AD therapeutics. (C) 2015 Published by Elsevier Inc. on behalf of The Alzheimer's Association.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE:

This study investigated the heritability of lens thickness (LT) and relative lens thickness (LT/axial length, rLT) measured by Lenstar among Chinese children and adolescents in the Guangzhou Twin Eye study.

METHODS:

Twins aged 8 to 22 years were enrolled from the Guangzhou Twin Registry. A series of LT and axial length (AL) measurements using the Lenstar were taken for each twin. Zygosity was confirmed by genotyping in all same-sex twin pairs. Heritability was assessed by structural variance component genetic modeling, after adjustment for age and sex with the Mx program.

RESULTS:

Seven hundred sixty-eight twin pairs (482 monozygotic [MZ] and 286 dizygotic [DZ] twins) were available for data analysis. The mean (standard deviation) LT and rLT were 3.45 (0.18) mm and 0.142 (0.01), respectively. The intraclass correlation coefficients (ICCs) for LT were 0.90 for the MZ and 0.39 for the DZ twins; and those for rLT were 0.90 for the MZ and 0.40 for the DZ twins, respectively. The best-fitting model yielded 89.5% (95% CI: 87.8%-91.0%) of additive genetic effects and 10.5% (95% CI: 9.0%-12.2%) of unique environmental effects for LT, and 89.3% (95% CI: 89.2%-89.3%) of additive genetic effects and 10.7% (95% CI: 10.7%-11.4%) of unique environmental effects for rLT.

CONCLUSIONS:

This study confirms that the LT in young healthy subjects may be mainly affected by additive genetic factors. High heritability remains even when the data are corrected for the influence of AL with the use of rLT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global aim of this thesis was to evaluate and assess the effects of a pesticide (dimethoate) and a metal (nickel), as model chemicals, within different organization levels, starting at the detoxification pathways (enzymatic biomarkers) and energy costs associated (energy content quantification, energy consumption and CEA) along with the physiological alterations at the individual and population level (mortality), leading to a metabolomic analysis (using liquid 1H-NMR) and finally a gene expression analysis (transcriptome and RT-qPCR analysis). To better understand potential variations in response to stressors, abiotic factors were also assessed in terrestrial isopods such as temperature, soil moisture and UV radiation. The evaluation performed using biochemical biomarkers and energy related parameters showed that increases in temperature might negatively affect the organisms by generating oxidative stress. It also showed that this species is acclimated to environments with low soil moisture, and that in high moisture scenarios there was a short gap between the optimal and adverse conditions that led to increased mortality. As for UV-R, doses nowadays present have shown to induce significant negative impact on these organisms. The long-term exposure to dimethoate showed that besides the neurotoxicity resulting from acetylcholinesterase inhibition, this stressor also caused oxidative stress. This effect was observed for both concentrations used (recommended field dose application and a below EC50 value) and that its combination with different temperatures (20ºC and 25ºC) showed different response patterns. It was also observed that dimethoate’s degradation rate in soils was higher in the presence of isopods. In a similar study performed with nickel, oxidative stress was also observed. But, in the case of this stressor exposure, organisms showed a strategy where the energetic costs necessary for detoxification (biomarkers) seemed to be compensated by positive alterations in the energy related parameters. In this work we presented for the first time a metabolomic profile of terrestrial isopods exposed to stressors (dimethoate and niquel), since until the moment only a previous study was performed on a metabolomic evaluation in nonexposed isopods. In the first part of the study we identify 24 new metabolites that had not been described previously. On the second part of the study a metabolomic profile variation of abstract non-exposed organism throughout the exposure was presented and finally the metabolomic profile of organisms exposed to dimethoate and nickel. The exposure to nickel suggested alteration in growth, moult, haemocyanin and glutathione synthesis, energy pathways and in osmoregulation. As for the exposure to dimethoate alterations in osmoregulation, energy pathways, moult and neurotransmission were also suggested. In this work it was also presented the first full body transcriptome of a terrestrial isopod from the species Porcellionides pruinosus, which will complement the scarce information available for this group of organisms. This transcriptome also served as base for a RNA-Seq and a RT-qPCR analysis. The results of the RNA-Seq analysis performed in organisms exposed to nickel showed that this stressor negatively impacted at the genetic and epigenetic levels, in the trafficking, storage and elimination of metals, generates oxidative stress, inducing neurotoxicity and also affecting reproduction. These results were confirmed through RT-qPCR. As for the impact of dimethoate on these organisms it was only accessed through RT-qPCR and showed oxidative stress, an impact in neurotransmission, in epigenetic markers, DNA repair and cell cycle impairment. This study allowed the design of an Adverse Outcome Pathway draft that can be used further on for legislative purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design phase of B-spline neural networks is a highly computationally complex task. Existent heuristics have been found to be highly dependent on the initial conditions employed. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this paper, the Bacterial Programming approach is presented, which is based on the replication of the microbial evolution phenomenon. This technique produces an efficient topology search, obtaining additionally more consistent solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiogenesis is a delicate and complex process that requires the coordination of an intricate network of pathways and the different cell types. Therefore, understanding heart development at the morphogenetic level is an essential requirement to uncover the causes of congenital heart disease and to provide insight for disease therapies. Mouse Cerberus like 2 (Cerl2) has been defined as a Nodal antagonist in the node with an important role in the Left-Right (L/R) axis establishment, at the early embryonic development. As expected, Cerl2 knockout mice (Cerl2-/-) showed multiple laterality defects with associated cardiac failure. In order to identify the endogenous role of Cerl2 during heart formation independent of its described functions in the node, we accurately analyzed animals where laterality defects were not present. We thereby unravel the consequences of Cerl2 lossof- function in the heart, namely increased left ventricular thickness due to hyperplasia of cardiomyocytes and de-regulated expression of cardiac genes. Furthermore, the Cerl2 mutant neonates present impaired cardiac function. Once that the cardiac expression of Cerl2 is mostly observed in the left ventricle until around midgestration, this result suggest a specific regulatory role of Cerl2 during the formation of the left ventricular myoarchitecture. Here, we present two possible molecular mechanisms underlying the cardiac Cerl2 function, the regulation of Cerl2 antagonist in activation of the TGFßs/Nodal/Activin/Smad2 signaling identified by increased Smad2 phosphorilation in Cerl2-/- hearts and the negative feedback between Cerl2 and Wnt/ß-catenin signaling in heart formation. In this work and since embryonic stem cells derived from 129 mice strain is extensively used to produce targeted mutants, we also present echocardiographic reference values to progressive use of juveniles and young adult 129/Sv strain in cardiac studies. In addition, we investigate the cardiac physiology of the surviving Cerl2 mutants in 129/Sv background over time through a follow-up study using echocardiographic analysis. Our results revealed that Cerl2-/- mice are able to improve and maintain the diastolic and most of systolic cardiac physiologic parameters as analyzed until young adult age. Since Cerl2 is no longer expressed in the postnatal heart, we suggest that an intrinsic and compensatory mechanism of adaptation may be active for recovering the decreased cardiac function found in Cerl2 mutant neonates. Altogether, these data highlight the role of Cerl2 during embryonic heart development in mice. Furthermore, we also suggest that Cerl2-/- may be an interesting model to uncover the molecular, cellular and physiological mechanisms behind the improvement of the cardiac function, contributing to the development of therapeutic approaches to treat heart failures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Salmonid populations of many rivers are rapidly declining. One possible explanation is that habitat fragmentation increases genetic drift and reduces the populations' potential to adapt to changing environmental conditions. We measured the genetic and eco-morphological diversity of brown trout (Salmo trutta) in a Swiss stream system, using multivariate statistics and Bayesian clustering. We found large genetic and phenotypic variation within only 40 km of stream length. Eighty-eight percent of all pairwise F(ST) comparisons and 50% of the population comparisons in body shape were significant. High success rates of population assignment tests confirmed the distinctiveness of populations in both genotype and phenotype. Spatial analysis revealed that divergence increased with waterway distance, the number of weirs, and stretches of poor habitat between sampling locations, but effects of isolation-by-distance and habitat fragmentation could not be fully disentangled. Stocking intensity varied between streams but did not appear to erode genetic diversity within populations. A lack of association between phenotypic and genetic divergence points to a role of local adaptation or phenotypically plastic responses to habitat heterogeneity. Indeed, body shape could be largely explained by topographic stream slope, and variation in overall phenotype matched the flow regimes of the respective habitats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-regulation is considered a powerful predictor of behavioral and mental health outcomes during adolescence and emerging adulthood. In this dissertation I address some electrophysiological and genetic correlates of this important skill set in a series of four studies. Across all studies event-related potentials (ERPs) were recorded as participants responded to tones presented in attended and unattended channels in an auditory selective attention task. In Study 1, examining these ERPs in relation to parental reports on the Behavior Rating Inventory of Executive Function (BRIEF) revealed that an early frontal positivity (EFP) elicited by to-be-ignored/unattended tones was larger in those with poorer self-regulation. As is traditionally found, N1 amplitudes were more negative for the to-be-attended rather than unattended tones. Additionally, N1 latencies to unattended tones correlated with parent-ratings on the BRIEF, where shorter latencies predicted better self-regulation. In Study 2 I tested a model of the associations between selfregulation scores and allelic variations in monoamine neurotransmitter genes, and their concurrent links to ERP markers of attentional control. Allelic variations in dopaminerelated genes predicted both my ERP markers and self-regulatory variables, and played a moderating role in the association between the two. In Study 3 I examined whether training in Integra Mindfulness Martial Arts, an intervention program which trains elements of self-regulation, would lead to improvement in ERP markers of attentional control and parent-report BRIEF scores in a group of adolescents with self-regulatory difficulties. I found that those in the treatment group amplified their processing of attended relative to unattended stimuli over time, and reduced their levels of problematic behaviour whereas those in the waitlist control group showed little to no change on both of these metrics. In Study 4 I examined potential associations between self-regulation and attentional control in a group of emerging adults. Both event-related spectral perturbations (ERSPs) and intertrial coherence (ITC) in the alpha and theta range predicted individual differences in self-regulation. Across the four studies I was able to conclude that real-world self-regulation is indeed associated with the neural markers of attentional control. Targeted interventions focusing on attentional control may improve self-regulation in those experiencing difficulties in this regard.