941 resultados para Gene Flow


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The white-spotted eagle ray Aetobatus narinari is a species complex that occurs circumglobally throughout warm-temperate waters. Aetobatus narinari is semi-pelagic and large (up to 300 cm disc width), suggesting high dispersal capabilities and gene flow on a wide spatial scale. Sequence data from two mitochondrial genes, cytochrome b (cytb) and NADH dehydrogenase subunit 4 (ND4), were used to determine the genetic variability within and among 18 sampling locations in the central Indo-Pacific biogeographical region. Populations in the Indo-Pacific were highly genetically structured with c. 70% of the total genetic variation found among three geographical regions (East China Sea, Southeast Asia and Australia). FST was 0.64 for cytb and 0.53 for ND4, with φST values being even larger, that is, 0.78 for cytb and 0.65 for ND4. This high-level genetic partitioning provides strong evidence against extensive gene flow in A. narinari. The degree of genetic population structuring in the Indo-Pacific was similar to that found on a global scale. Global FST was 0.63 for cytb and 0.57 for ND4, and global φST values were 0.94 for cytb and 0.82 for ND4. This suggests that the A. narinari complex may be more speciose than the two or three species proposed to date. Further sampling and genetic analyses are likely to uncover the ‘evolutionarily significant’ and ‘management’ units that are critical to determine the susceptibilities of individual populations to regional fishing pressures and to provide advice on management options. Network analyses showed a close genetic relationship between haplotypes from the central Indo-Pacific and South Africa, providing support for a proposed dispersal pathway from the possible centre of origin of the A. narinari species complex in the Indo-Pacific into the Atlantic Ocean.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Evolutionary genetics incorporates traditional population genetics and studies of the origins of genetic variation by mutation and recombination, and the molecular evolution of genomes. Among the primary forces that have potential to affect the genetic variation within and among populations, including those that may lead to adaptation and speciation, are genetic drift, gene flow, mutations and natural selection. The main challenges in knowing the genetic basis of evolutionary changes is to distinguish the adaptive selection forces that cause existent DNA sequence variants and also to identify the nucleotide differences responsible for the observed phenotypic variation. To understand the effects of various forces, interpretation of gene sequence variation has been the principal basis of many evolutionary genetic studies. The main aim of this thesis was to assess different forms of teleost gene sequence polymorphisms in evolutionary genetic studies of Atlantic salmon (Salmo salar) and other species. Firstly, the level of Darwinian adaptive evolution affected coding regions of the growth hormone (GH) gene during the teleost evolution was investigated based on the sequence data existing in public databases. Secondly, a target gene approach was used to identify within population variation in the growth hormone 1 (GH1) gene in salmon. Then, a new strategy for single nucleotide polymorphisms (SNPs) discovery in salmonid fishes was introduced, and, finally, the usefulness of a limited number of SNP markers as molecular tools in several applications of population genetics in Atlantic salmon was assessed. This thesis showed that the gene sequences in databases can be utilized to perform comparative studies of molecular evolution, and some putative evidence of the existence of Darwinian selection during the teleost GH evolution was presented. In addition, existent sequence data was exploited to investigate GH1 gene variation within Atlantic salmon populations throughout its range. Purifying selection is suggested to be the predominant evolutionary force controlling the genetic variation of this gene in salmon, and some support for gene flow between continents was also observed. The novel approach to SNP discovery in species with duplicated genome fragments introduced here proved to be an effective method, and this may have several applications in evolutionary genetics with different species - e.g. when developing gene-targeted markers to investigate quantitative genetic variation. The thesis also demonstrated that only a few SNPs performed highly similar signals in some of the population genetic analyses when compared with the microsatellite markers. This may have useful applications when estimating genetic diversity in genes having a potential role in ecological and conservation issues, or when using hard biological samples in genetic studies as SNPs can be applied with relatively highly degraded DNA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Paracoccidioides brasiliensis is the etiologic agent of paracoccidioidomycosis, a disease confined to Latin America and of marked importance in the endemic areas due to its frequency and severity. This species is considered to be clonal according to mycological criteria and has been shown to vary in virulence. To characterize natural genetic variation and reproductive mode in this fungus, we analyzed P. brasiliensis phylogenetically in search of cryptic species and possible recombination using concordance and nondiscordance of gene genealogies with respect to phylogenies of eight regions in five nuclear loci. Our data indicate that this fungus consists of at least three distinct, previously unrecognized species: S1 (species 1 with 38 isolates), PS2 (phylogenetic species 2 with six isolates), and PS3 (phylogenetic species 3 with 21 isolates). Genealogies of four of the regions studied strongly supported the PS2 clade, composed of five Brazilian and one Venezuelan isolate. The second clade, PS3, composed solely of 21 Colombian isolates, was strongly supported by the alpha-tubulin genealogy. The remaining 38 individuals formed S1. Two of the three lineages of P. brasiliensis, S1 and PS2, are sympatric across their range, suggesting barriers to gene flow other than geographic isolation. Our study provides the first evidence for possible sexual reproduction in P. brasiliensis S1, but does not rule it out in the other two species.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Our objective was to determine how the distribution of red blood cell diseases is related to malaria occurrence in north Brazil, a region endemic for malaria. We evaluated the incidence of two mutations in the HFE gene, H63D and C282Y, in two study groups: a control blood donor group, with no indication of malaria infection, and a group constituted of malaria patients of four states of the Amazonian region. The hemoglobin polymorphisms were obtained by HPLC and classical laboratory methodologies, and the two mutations in the HFE gene were assayed by PCR-RFLP. We found a high frequency of alpha thalassemia, but there were no significant differences between blood donors and malaria patients. There were also no significant differences in the frequencies of HbA(2); however, the frequency of HbF was significantly different in individuals with malaria from Para and Rondonia. The mean number of reticulocytes was significantly reduced in the blood donors from the northern region, suggesting an adaptive strategy of these populations to parasitic attack by Plasmodium. Most individuals were heterozygous for the H63D allele of the HFE gene in both study groups. In the blood donors group, the greatest frequency of the H63D allele was found in Caucasians of all the states. In the malaria patients group in Rondonia, there was a high frequency of the H63D allele among the non-Caucasians. In the other states, and in the malaria patients group, the H63D allele was the most frequent among the Caucasians. Based on our results, we suggest that the maintenance of polymorphism of the mutations in the gene HFE can be explained by selective factors other than malaria, or it is due to simple allelic oscillation and by the constant gene flow among the populations in Brazil.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Various factors affect spatial genetic structure in plant populations, including adult density and primary and secondary seed dispersal mechanisms. We evaluated pollen and seed dispersal distances and spatial genetic structure of Carapa guianensis Aublet. (Meliaceae) in occasionally inundated and terra firme forest environments that differed in tree densities and secondary seed dispersal agents. We used parentage analysis to obtain contemporary gene flow estimates and assessed the spatial genetic structure of adults and juveniles. Despite the higher density of adults (diameter at breast height >= 25 cm) and spatial aggregation in occasionally inundated forest, the average pollen dispersal distance was similar in both types of forest (195 +/- 106 m in terra firme and 175 +/- 87 m in occasionally inundated plots). Higher seed flow rates (36.7% of juveniles were from outside the plot) and distances (155 +/- 84 m) were found in terra firme compared to the occasionally inundated plot (25.4% and 114 +/- 69 m). There was a weak spatial genetic structure in juveniles and in terra firme adults. These results indicate that inundation may not have had a significant role in seed dispersal in the occasionally inundated plot, probably because of the higher levels of seedling mortality.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

SERA5 is regarded as a promising malaria vaccine candidate of the most virulent human malaria parasite Plasmodium falciparum. SERA5 is a 120 kDa abundantly expressed blood-stage protein containing a papain-like protease. Since substantial polymorphism in blood-stage vaccine candidates may potentially limit their efficacy, it is imperative to fully investigate polymorphism of the SERA5 gene (sera5). In this study, we performed evolutionary and population genetic analysis of sera5. The level of inter-species divergence (kS = 0.076) between P. falciparum and Plasmodium reichenowi, a closely related chimpanzee malaria parasite is comparable to that of housekeeping protein genes. A signature of purifying selection was detected in the proenzyme and enzyme domains. Analysis of 445 near full-length P. falciparum sera5 sequences from nine countries in Africa, Southeast Asia, Oceania and South America revealed extensive variations in the number of octamer repeat (OR) and serine repeat (SR) regions as well as substantial level of single nucleotide polymorphism (SNP) in non-repeat regions (2562 bp). Remarkably, a 14 amino acid sequence of SERA5 (amino acids 59-72) that is known to be the in vitro target of parasite growth inhibitory antibodies was found to be perfectly conserved in all 445 worldwide isolates of P. falciparum evaluated. Unlike other major vaccine target antigen genes such as merozoite surface protein-1, apical membrane antigen-1 or circumsporozoite protein, no strong evidence for positive selection was detected for SNPs in the non-repeat regions of sera5. A biased geographical distribution was observed in SNPs as well as in the haplotypes of the sera5 OR and SR regions. In Africa, OR- and SR-haplotypes with low frequency (<5%) and SNPs with minor allele frequency (<5%) were abundant and were mostly continent-specific. Consistently, significant genetic differentiation, assessed by the Wright's fixation index (FST) of inter-population variance in allele frequencies, was detected for SNPs and both OR- and SR-haplotypes among almost all parasite populations. The exception was parasite populations between Tanzania and Ghana, suggesting frequent gene flow in Africa. The present study points to the importance of investigating whether biased geographical distribution for SNPs and repeat variants in the OR and SR regions affect the reactivity of human serum antibodies to variants. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The activity of natural killer cells depends on the balance between activating and inhibitory signals coming from their receptors. Among these are the killer cell immunoglobulin-like receptors (KIR) that recognize specific HLA class I allotypes. Here we characterized KIR genetic diversity and their HLA ligands in the population of Curitiba, Parana State (n = 164), and compared it with other worldwide populations. The distribution of 2DL4 alleles was also analyzed. The Curitiba population did not differ significantly from European and Euro-descendant populations, but as an admixed population showed higher genetic diversity. We found 27 KIR profiles, many of them uncommon in European populations, in agreement with the elevated historically recent gene flow in the study population. The frequencies of KIR genes and their respective HLA ligands were distributed independently and none of the analyzed individuals lacked functional KIR-HLA ligand combinations. KIR gene frequencies of 33 worldwide populations were consistent with geographic and ethnic distribution, in agreement with demography being the major factor shaping the observed gene content diversity of the KIR locus.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Yellowfin tuna (Thunnus albacares, YFT, Bonnaterre 1788) is one of the most important market tuna species in the world. The high mortality of juveniles is in part caused by their bycatch. Indeed, if unregulated, it could permanently destabilize stocks health. For this reason investigating and better knowing the stock boundaries represent a crucial concern. Aim of this thesis was to preliminary investigate the YFT population structure within and between Atlantic and Pacific Oceans through the analysis of genetic variation at eight microsatellite loci and assess the occurrence of barriers to the gene flow between Oceans. For this propouse we collected 4 geographical samples coming from Atlantic and Pacific Ocean and selected a panel of 8 microsatellites loci developped by Antoni et al., (2014). Samples 71-2-Y and 77-2-Y, came from rispectively west central pacific ocean (WCPO) and east central pacific ocean (ECPO), instead samples 41-1-Y and 34-2-Y derive from west central atlantic ocean (WCAO) and east central atlantic ocean (ECAO). Total 160 specimens were analyzed (40 per sample) and were carried out several genetic information as allele frequencies, allele number, allelic richness, HWE (using He and Ho) and pairwise Fst genetic distance. Results obtained, may support the panmictic theory of this species, only one of pairwise Fst obtained is statistically significant (Fst= 0.00927; pV= 0.00218) between 41-1-Y and 71-2-Y samples. Results suggest low genetic differentiation and consequent high level of gene flow between Atlantic and Pacific populations. Furthermore, we performed an analysis of molecular taxonomy through the use of ATCO (the flaking region between ATPse6 and cytochrome oxidase subunit III genes mt DNA, to discriminate within the gener Thunnus two of the related species (Yellofin and bigeye tuna) according with their difficult recognition at certain size (<40 cm). ATCO analysis in this thesis, has provided strong discriminate evidence between the target species proving to be one of the most reliable genetic tools capable to indagate within the genus Thunnus. Thus, our study has provided useful information for possible use of this protocol for conservation plans and management of this fish stocks.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hedgerows represent important components of agri-environment landscapes that are increasingly coming under threat from climate change, emergent diseases, invasive species and land use change. Given that population genetic data can be used to inform best-practice management strategies for woodland and hedgerow tree species, we carried out a study on hawthorn (Crataegus monogyna Jacq.), a key component of hedgerows, on a regional basis using a combination of nuclear and chloroplast microsatellite markers. We found that levels of genetic diversity were high and comparable to, or slightly higher than, other tree species from the same region. Levels of population differentiation for both sets of markers, however, were extremely low, suggesting extensive gene flow via both seed and pollen. These findings suggest that a holistic approach to woodland management, one which does not necessarily rely on the concept of “seed zones” previously suggested, but which also takes into account populations with high and/or rare chloroplast (i.e. seed-specific) genetic variation, might be the best approach to restocking and replanting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Habitat fragmentation can have an impact on a wide variety of biological processes including abundance, life history strategies, mating system, inbreeding and genetic diversity levels of individual species. Although fragmented populations have received much attention, ecological and genetic responses of species to fragmentation have still not been fully resolved. The current study investigated the ecological factors that may influence the demographic and genetic structure of the giant white-tailed rat (Uromys caudimaculatus) within fragmented tropical rainforests. It is the first study to examine relationships between food resources, vegetation attributes and Uromys demography in a quantitative manner. Giant white-tailed rat densities were strongly correlated with specific suites of food resources rather than forest structure or other factors linked to fragmentation (i.e. fragment size). Several demographic parameters including the density of resident adults and juvenile recruitment showed similar patterns. Although data were limited, high quality food resources appear to initiate breeding in female Uromys. Where data were sufficient, influx of juveniles was significantly related to the density of high quality food resources that had fallen in the previous three months. Thus, availability of high quality food resources appear to be more important than either vegetation structure or fragment size in influencing giant white-tailed rat demography. These results support the suggestion that a species’ response to fragmentation can be related to their specific habitat requirements and can vary in response to local ecological conditions. In contrast to demographic data, genetic data revealed a significant negative effect of habitat fragmentation on genetic diversity and effective population size in U. caudimaculatus. All three fragments showed lower levels of allelic richness, number of private alleles and expected heterozygosity compared with the unfragmented continuous rainforest site. Populations at all sites were significantly differentiated, suggesting restricted among population gene flow. The combined effects of reduced genetic diversity, lower effective population size and restricted gene flow suggest that long-term viability of small fragmented populations may be at risk, unless effective management is employed in the future. A diverse range of genetic reproductive behaviours and sex-biased dispersal patterns were evident within U. caudimaculatus populations. Genetic paternity analyses revealed that the major mating system in U. caudimaculatus appeared to be polygyny at sites P1, P3 and C1. Evidence of genetic monogamy, however, was also found in the three fragmented sites, and was the dominant mating system in the remaining low density, small fragment (P2). High variability in reproductive skew and reproductive success was also found but was less pronounced when only resident Uromys were considered. Male body condition predicted which males sired offspring, however, neither body condition nor heterozygosity levels were accurate predictors of the number of offspring assigned to individual males or females. Genetic spatial autocorrelation analyses provided evidence for increased philopatry among females at site P1, but increased philopatry among males at site P3. This suggests that male-biased dispersal occurs at site P1 and female-biased dispersal at site P3, implying that in addition to mating systems, Uromys may also be able to adjust their dispersal behaviour to suit local ecological conditions. This study highlights the importance of examining the mechanisms that underlie population-level responses to habitat fragmentation using a combined ecological and genetic approach. The ecological data suggested that habitat quality (i.e. high quality food resources) rather than habitat quantity (i.e. fragment size) was relatively more important in influencing giant white-tailed rat demographics, at least for the populations studied here . Conversely, genetic data showed strong evidence that Uromys populations were affected adversely by habitat fragmentation and that management of isolated populations may be required for long-term viability of populations within isolated rainforest fragments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mud crab (Scylla spp.) aquaculture industry has expanded rapidly in recent years in many countries in the Indo - West Pacific (IWP) region as an alternative to marine shrimp culture because of significant disease outbreaks and associated failures of many shrimp culture industries in the region. Currently, practices used to produce and manage breeding crabs in hatcheries may compromise levels of genetic diversity, ultimately compromising growth rates, disease resistance and stock productivity. Therefore, to avoid “genetic pollution” and its harmful effects and to promote further development of mud crab aquaculture and fisheries in a sustainable way, a greater understanding of the genetic attributes of wild and cultured mud crab stocks is required. Application of these results can provide benefits for managing wild and cultured Asian mud crab populations for multiple purposes including for commercial production, recreation and conservation and to increase profitability and sustainability of newly emerging crab culture industries. Phylogeographic patterns and the genetic structure of Asian mud crab populations across the IWP were assessed to determine if they were concordant with those of other widespread taxa possessing pelagic larvae of relatively long duration. A 597 bp fragment of the mitochondrial DNA COI gene was amplified and screened for variation in a total of 297 individuals of S. paramamosain from six sampling sites across the species’ natural geographical distribution in the IWP and 36 unique haplotypes were identified. Haplotype diversities per site ranged from 0.516 to 0.879. Nucleotide diversity estimates among haplotypes were 0.11% – 0.48%. Maximum divergence observed among S. paramamosain samples was 1.533% and samples formed essentially a single monophyletic group as no obvious clades were related to geographical location of sites. A weak positive relationship was observed however, between genetic distance and geographical distance among sites. Microsatellite markers were then used to assess contemporary gene flow and population structure in Asian mud crab populations sampled across their natural distribution in the IWP. Eight microsatellite loci were screened in sampled S. paramamosain populations and all showed high allelic diversity at all loci in sampled populations. In total, 344 individuals were analysed, and 304 microsatellite alleles were found across the 8 loci. The mean number of alleles per locus at each site ranged from 20.75 to 28.25. Mean allelic richness per site varied from 17.2 to 18.9. All sites showed high levels of heterozygosity as average expected heterozygosities for all loci ranged from 0.917 – 0.953 while mean observed heterozygosity ranged from 0.916 – 0.959. Allele diversities were similar at all sites and across all loci. The results did not show any evidence for major differences in allele frequencies among sites and patterns of allele frequencies were very similar in all populations across all loci. Estimates of population differentiation (FST) were relatively low and most probably largely reflect intra – individual variation for very highly variable loci. Results from nDNA analysis showed evidence for only very limited population genetic structure among sampled S. paramamosain, and a positive and significant association for genetic and geographical distance among sample sites. Microsatellite markers were then employed to determine if adequate levels of genetic diversity has been captured in crab hatcheries for the breeding cycle. The results showed that all microsatellite loci were polymorphic in hatchery samples. Culture populations were in general, highly genetically depauperate, compared with comparable wild populations, with only 3 to 8 alleles recorded for the same loci set per population. In contrast, very high numbers of alleles per locus were found in reference wild S. paramamosain populations, which ranged from 18 to 46 alleles per locus per population. In general, this translates into a 3 to 10 fold decline in mean allelic richness per locus in all culture stocks compared with wild reference counterparts. Furthermore, most loci in all cultured S. paramamosain samples showed departures from HWE equilibrium. Allele frequencies were very different in culture samples from that present in comparable wild reference samples and this in particular, was reflected in a large decline in allele diversity per locus. The pattern observed was best explained by significant impacts of breeding practices employed in hatcheries rather than natural differentiation among wild populations used as the source of brood stock. Recognition of current problems and management strategies for the species both for the medium and long-term development of the new culture industry are discussed. The priority research to be undertaken over the medium term for S. paramamosain should be to close the life cycle fully to allow individuals to be bred on demand and their offspring equalised to control broodstock reproductive contributions. Establishing a broodstock register and pedigree mating system will be required before any selection program is implemented. This will ensure that sufficient genetic variation will be available to allow genetic gains to be sustainably achieved in a future stock improvement program. A fundamental starting point to improve hatchery practices will be to encourage farmers and hatchery managers to spawn more females in their hatcheries as it will increase background genetic diversity in culture stocks. Combining crablet cohorts from multiple hatcheries into a single cohort for supply to farmers or rotation of breeding females regularly in hatcheries will help to address immediate genetic diversity problems in culture stocks. Application of these results can provide benefits for managing wild and cultured Asian mud crab populations more efficiently. Over the long-term, application of data on genetic diversity in wild and cultured stocks of Asian mud crab will contribute to development of sustainable and productive culture industries in Vietnam and other countries in the IWP and can contribute towards conservation of wild genetic resources.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The two adjacent genes of coat protein 1 and 2 of rice tungro spherical virus (RTSV) were amplified from total RNA extracts of serologically indistinguishable field isolates from the Philippines and Indonesia, using reverse transcriptase polymerase chain reaction (RT-PCR). Digestion with HindIII and BstYI restriction endonucleases differentiated the amplified DNA products into eight distinct coat protein genotypes. These genotypes were then used as indicators of virus diversity in the field. Inter- and intra-site diversities were determined over three cropping seasons. At each of the sites surveyed, one or two main genotypes prevailed together with other related minor or mixed genotypes that did not replace the main genotype over the sampling time. The cluster of genotypes found at the Philippines sites was significantly different from the one at the Indonesia sites, suggesting geographic isolation for virus populations. Phylogenetic studies based on the nucleotide sequences of 38 selected isolates confirm the spatial distribution of RTSV virus populations but show that gene flow may occur between populations. Under the present conditions, rice varieties do not seem to exert selective pressure on the virus populations. Based on the selective constraints in the coat protein amino acid sequences and the virus genetic composition per site, a negative selection model followed by random-sampling events due to vector transmissions is proposed to explain the inter-site diversity observed