999 resultados para Fetal Proteins


Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECT: Chordoma cells can generate solid-like tumors in xenograft models that express some molecular characteristics of the parent tumor, including positivity for brachyury and cytokeratins. However, there is a dearth of molecular markers that relate to chordoma tumor growth, as well as the cell lines needed to advance treatment. The objective in this study was to isolate a novel primary chordoma cell source and analyze the characteristics of tumor growth in a mouse xenograft model for comparison with the established U-CH1 and U-CH2b cell lines. METHODS: Primary cells from a sacral chordoma, called "DVC-4," were cultured alongside U-CH1 and U-CH2b cells for more than 20 passages and characterized for expression of CD24 and brachyury. While brachyury is believed essential for driving tumor formation, CD24 is associated with healthy nucleus pulposus cells. Each cell type was subcutaneously implanted in NOD/SCID/IL2Rγ(null) mice. The percentage of solid tumors formed, time to maximum tumor size, and immunostaining scores for CD24 and brachyury (intensity scores of 0-3, heterogeneity scores of 0-1) were reported and evaluated to test differences across groups. RESULTS: The DVC-4 cells retained chordoma-like morphology in culture and exhibited CD24 and brachyury expression profiles in vitro that were similar to those for U-CH1 and U-CH2b. Both U-CH1 and DVC-4 cells grew tumors at rates that were faster than those for U-CH2b cells. Gross tumor developed at nearly every site (95%) injected with U-CH1 and at most sites (75%) injected with DVC-4. In contrast, U-CH2b cells produced grossly visible tumors in less than 50% of injected sites. Brachyury staining was similar among tumors derived from all 3 cell types and was intensely positive (scores of 2-3) in a majority of tissue sections. In contrast, differences in the pattern and intensity of staining for CD24 were noted among the 3 types of cell-derived tumors (p < 0.05, chi-square test), with evidence of intense and uniform staining in a majority of U-CH1 tumor sections (score of 3) and more than half of the DVC-4 tumor sections (scores of 2-3). In contrast, a majority of sections from U-CH2b cells stained modestly for CD24 (scores of 1-2) with a predominantly heterogeneous staining pattern. CONCLUSIONS: This is the first report on xenografts generated from U-CH2b cells in which a low tumorigenicity was discovered despite evidence of chordoma-like characteristics in vitro. For tumors derived from a primary chordoma cell and U-CH1 cell line, similarly intense staining for CD24 was observed, which may correspond to their similar potential to grow tumors. In contrast, U-CH2b tumors stained less intensely for CD24. These results emphasize that many markers, including CD24, may be useful in distinguishing among chordoma cell types and their tumorigenicity in vivo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The proline-rich γ-carboxyglutamic acid (Gla) proteins (PRGPs) 1 and 2 are the founding members of a family of vitamin K-dependent single-pass integral membrane proteins characterized by an extracellular amino terminal domain of approximately 45 amino acids that is rich in Gla. The intracellular carboxyl terminal region of these two proteins contains one or two copies of the sequence PPXY, a motif present in a variety of proteins involved in such diverse cellular functions as signal transduction, cell cycle progression, and protein turnover. In this report, we describe the cloning of the cDNAs for two additional human transmembrane Gla proteins (TMG) of 20–24 kDa named TMG3 and TMG4. These two proteins possess extracellular Gla domains with 13 or 9 potential Gla residues, respectively, followed by membrane-spanning hydrophobic regions and cytoplasmic carboxyl terminal regions that contain PPXY motifs. This emerging family of integral membrane Gla proteins includes proline-rich Gla protein (PRGP) 1, PRGP2, TMG3, and TMG4, all of which are characterized by broad and variable distribution in both fetal and adult tissues. Members of this family can be grouped into two subclasses on the basis of their gene organization and amino acid sequence. These observations suggest novel physiological functions for vitamin K beyond its known role in the biosynthesis of proteins involved in blood coagulation and bone development. The identification and characterization of these proteins may allow a more complete understanding of the teratogenic consequences of exposure in utero to vitamin K antagonists, such as warfarin-based anticoagulants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Burn-wound healing is a dynamic, interactive process involving a number of cellular and molecular events and is characterized by inflammation, granulation tissue formation, re-epithelialization, and tissue remodeling (Greenhalgh, 2002; Linares, 2002). Unlike incisional-wound healing, it also requires extensive re-epithelialization due to a predominant horizontal loss of tissue and often heals with abnormal scarring when burns involve deep dermis. The early mammalian fetus has the remarkable ability to regenerate normal epidermis and dermis and to heal dermal incisional wounds with no signs of scarring. Extensive research has indicated that scarless healing appears to be intrinsic to fetal skin (McCallion and Ferguson, 1996; Ferguson and O’Kane, 2004). Previously, we reported a fetal burn model, in which 80-day-old ovine fetuses (gestation¼ 145–153 days) healed deep dermal partial thickness burns without scars, whereas postnatal lambs healed equal depth burns with significant scarring (Cuttle et al., 2005; Fraser et al., 2005). This burn model provided early evidence that fetal skin has the capacity to repair and restore dermal horizontal loss, not just vertical injuries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study identified the molecular defects underlying three lethal fetal syndromes. Lethal Congenital Contracture Syndrome 1 (LCCS1, MIM 253310) and Lethal Arthrogryposis with Anterior Horn Cell Disease (LAAHD, MIM 611890) are fetal motor neuron diseases. They affect the nerve cells that control voluntary muscle movement, and eventually result in severe atrophy of spinal cord motor neurons and fetal immobility. Both LCCS1 and LAAHD are caused by mutations in the GLE1 gene, which encodes for a multifunctional protein involved in posttranscriptional mRNA processing. LCCS2 and LCCS3, two syndromes that are clinically similar to LCCS1, are caused by defective proteins involved in the synthesis of inositol hexakisphosphate (IP6), an essential cofactor of GLE1. This suggests a common mechanism behind these fetal motor neuron diseases, and along with accumulating evidence from genetic studies of more late-onset motor neuron diseases such as Spinal muscular atrophy (SMA) and Amyotrophic lateral sclerosis (ALS), implicates mRNA processing as a common mechanism in motor neuron disease pathogenesis. We also studied gle1-/- zebrafish in order to investigate whether they would be a good model for studying the pathogenesis of LCCS1 and LAAHD. Mutant zebrafish exhibit cell death in their central nervous system at two days post fertilization, and the distribution of mRNA within the cells of mutant zebrafish differs from controls, encouraging further studies. The third lethal fetal syndrome is described in this study for the first time. Cocoon syndrome (MIM 613630) was discovered in a Finnish family with two affected individuals. Its hallmarks are the encasement of the limbs under the skin, and severe craniofacial abnormalities, including the lack of skull bones. We showed that Cocoon syndrome is caused by a mutation in the gene encoding the conserved helix-loop-helix ubiquitous kinase CHUK, also known as IκB kinase α (IKKα). The mutation results in the complete lack of CHUK protein expression. CHUK is a subunit of the IκB kinase enzyme that inhibits NF-κB transcription factors, but in addition, it has an essential, independent role in controlling keratinocyte differentiation, as well as informing morphogenetic events such as limb and skeletal patterning. CHUK also acts as a tumor suppressor, and is frequently inactivated in cancer. This study has brought significant new information about the molecular background of these three lethal fetal syndromes, as well as provided knowledge about the prerequisites of normal human development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fetal membranes consist of 10 distinct layers including components of amnion, chorion and decidua, the latter being of maternal origin. They form mechanically integrated sheets capable of retaining amniotic fluid and play an essential role in protecting fetal growth and development in the pregnant uterus. The extracellular matrix, substrate for plasminogen activators (PAs), is an important supportive framework of the fetal membranes. :Fetal membranes from women with preterm premature rupture of membranes may differ in their protease activity compared with normal membranes. To identify the presence of PAs and their inhibitors (PAI) and their possible role in the process of fetal membrane rupture, this study in investigated the distribution and localization of both protein and mRNA for tissue (t) and urokinase (u) PA and their inhibitors type 1 (PAI-1) and type 2 (PAI-2) in amniochorion of human and rhesus monkey using conventional and. confocal immunofluorescence microscopy. In situ hybridization analysis showed that the distribution and localization of mRNAs for tPA, uPA, PAI-I and PAI-2 were similar in the fetal membranes of human and rhesus monkey; no obvious species difference was observed. Evidence of tPA mRNA was detected in amniotic epithelium, trophoblast cells and nearly all cells of the decidual layer. Strong expression of uPA mRNA was noted in the decidual cells which increased in intensity as the abscission point was approached. Weak staining in chorion laeve trophoblast was also detected. In situ hybridization experiments showed PAI-1 mRNA to be concentrated mainly in the decidual cells, some of which were interposed into the maternal-facing edge of the chorion laeve. Maximal labelling of the decidua occurred towards the zone of abscission. Weak expression of PAI-1 mRNA nas also noted in some cells of the chorion laeve. The distribution of PAI-2 mRNA in amniochorion was also concentrated in the cells of the decidual layer, maximum expression of the mRNA was in the level of abscission. No detectable amount of mRNAs for tPA, uPA, PAI-1 and PAI-2 was found in the fibroblast, reticular and spongy layers. Distribution of the proteins of tPA, uPA and PAI-1 in the fetal membranes of these two species was consistent with the distribution of their mRNA. Anti-PAI-2 immunofluorescence was found to be strongly concentrated in the amniotic epithelium, but PAI-2 mRNA was negative in this layer, suggesting that the epithelium-associated PAI-2 is not of epithelial origin. These findings suggest that a local fibrinolysis in fetal membranes generated by precisely balanced expression of PAs and their inhibitors via paracrine or autocrine mechanisms may play an essential role in fetal membrane development, maturation and in membrane rupture. Following an analysis of the distribution and synthesis of activators and inhibitors it was found that they may play a role in abscission during the third stage of labour. (C) 1998 W. B. Saunders Company Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CONTEXT: Fetal ovarian development and primordial follicle formation underpin future female fertility. Prokineticin (PROK) ligands regulate cell survival, proliferation and angiogenesis in adult reproductive tissues including the ovary. However, their expression and function during fetal ovarian development remains unclear.

OBJECTIVE: To investigate expression and localization of the PROK ligands, receptors and their downstream transcriptional targets in the human fetal ovary.

SETTING: This study was conducted at the University of Edinburgh.

PARTICIPANTS: Ovaries were collected from 37 morphologically normal human fetuses.

DESIGN AND MAIN OUTCOME MEASURES: mRNA and protein expression of PROK ligands and receptors was determined in human fetal ovaries using qRT-PCR, immunoblotting and immunohistochemistry. Functional studies were performed using a human germ tumour cell line (TCam-2) stably transfected with PROKR1.

RESULTS: Expression of PROK1 and PROKR1 was significantly higher in mid-gestation ovaries (17-20 weeks) than at earlier gestations (8-11 and 14-16 weeks). PROK2 significantly increased across the gestations examined. PROKR2 expression remained unchanged. PROK ligand and receptor proteins were predominantly localised to germ cells (including oocytes within primordial follicles) and endothelial cells, indicating these cell types to be the targets of PROK signalling in the human fetal ovary. PROK1 treatment of a germ cell line stably-expressing PROKR1 resulted in ERK phosphorylation, and elevated COX2 expression.

CONCLUSIONS: Developmental changes in expression and regulation of COX2 and pERK by PROK1 suggest that PROK ligands may be novel regulators of germ cell development in the human fetal ovary, interacting within a network of growth and survival factors prior to primordial follicle formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reproductive disorders that are common/increasing in prevalence in human males may arise because of deficient androgen production/action during a fetal 'masculinization programming window'. We identify a potentially important role for Chicken Ovalbumin Upstream Promoter-Transcription Factor II (COUP-TFII) in Leydig cell (LC) steroidogenesis that may partly explain this. In rats, fetal LC size and intratesticular testosterone (ITT) increased ~3-fold between e15.5-e21.5 which associated with a progressive decrease in the percentage of LC expressing COUP-TFII. Exposure of fetuses to dibutyl phthalate (DBP), which induces masculinization disorders, dose-dependently prevented the age-related decrease in LC COUP-TFII expression and the normal increases in LC size and ITT. We show that nuclear COUP-TFII expression in fetal rat LC relates inversely to LC expression of steroidogenic factor-1 (SF-1)-dependent genes (StAR, Cyp11a1, Cyp17a1) with overlapping binding sites for SF-1 and COUP-TFII in their promoter regions, but does not affect an SF-1 dependent LC gene (3β-HSD) without overlapping sites. We also show that once COUP-TFII expression in LC has switched off, it is re-induced by DBP exposure, coincident with suppression of ITT. Furthermore, other treatments that reduce fetal ITT in rats (dexamethasone, diethylstilbestrol (DES)) also maintain/induce LC nuclear expression of COUP-TFII. In contrast to rats, in mice DBP neither causes persistence of fetal LC COUP-TFII nor reduces ITT, whereas DES-exposure of mice maintains COUP-TFII expression in fetal LC and decreases ITT, as in rats. These findings suggest that lifting of repression by COUP-TFII may be an important mechanism that promotes increased testosterone production by fetal LC to drive masculinization. As we also show an age-related decline in expression of COUP-TFII in human fetal LC, this mechanism may also be functional in humans, and its susceptibility to disruption by environmental chemicals, stress and pregnancy hormones could explain the origin of some human male reproductive disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fetal ovarian development and primordial follicle formation are imperative for adult fertility in the female. Data suggest the interleukin (IL)6-type cytokines, leukaemia inhibitory factor (LIF), IL6, oncostatin M (OSM) and ciliary neurotrophic factor (CNTF), are able to regulate the survival, proliferation and differentiation of fetal murine germ cells (GCs) in vivo and in vitro. We postulated that these factors may play a similar role during early human GC development and primordial follicle formation. To test this hypothesis, we have investigated the expression and regulation of IL6-type cytokines, using quantitative reverse transcription polymerase chain reaction and immunohistochemistry. Expression of transcripts encoding OSM increased significantly across the gestational range examined (8-20 weeks), while expression of IL6 increased specifically between the first (8-11 weeks) and early second (12-16 weeks) trimesters, co-incident with the initiation of meiosis. LIF and CNTF expression remained unchanged. Expression of the genes encoding the LIF and IL6 receptors, and their common signalling subunit gp130, was also found to be developmentally regulated, with expression increasing significantly with increasing gestation. LIF receptor and gp130 proteins localized exclusively to GCs, including oocytes in primordial follicles, indicating this cell type to be the sole target of IL6-type cytokine signalling in the human fetal ovary. These data establish that IL6-type cytokines and their receptors are expressed in the human fetal ovary and may directly influence GC development at multiple stages of maturation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interferon-gamma (IFN-gamma) modulates the expression of Class II major histocompatibility antigens (MHC), thus providing a potential regulatory mechanism for local immune reactivity in the context of MHC-restricted antigen presentation. Within the central nervous system (CNS), the expression of MHC Class II antigens has been demonstrated on human reactive astrocytes and glioma cells. In order to investigate the modulation of HLA-DR on normal astrocytes, two cell lines were grown from a 20-week-old fetal brain. In situ none of the fetal brain cells expressed HLA-DR as determined by immunohistology on frozen tissue sections. The two cell lines, FB I and FB II, expressed GFAP indicating their astrocytic origin. FB I was HLA-DR negative at the first tissue culture passages, but could be induced to express HLA-DR when treated with 500 U/ml IFN-gamma. FB II was spontaneously HLA-DR positive in the early passages, lost the expression of this antigen after 11 passages and could also be induced to express HLA-DR by IFN-gamma. The induction of HLA-DR expression was demonstrated both by a binding RIA and by immunoprecipitation using a monoclonal antibody (MAB) directed against a monomorphic determinant of HLA-DR. The HLA-DR alloantigens were determined on FB II cells after IFN-gamma treatment, by immunofluorescence and by cytotoxicity assays, and were shown to be DR4, DR6, Drw52, DRw53 and DQwl. These results show that human fetal astrocytes can be induced to express HLA-DR by IFN-gamma in vitro and support the concept that astrocytes may function as antigen-presenting cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The straightforward anatomical organisation of the developing and mature rat spinal cord was used to determine and interpret the time of appearance and expression patterns of microtubule-associated proteins (MAP) 1b and 2. Immunoblots revealed the presence of MAP1b and 2 in the early embryonic rat spinal cord and confirmed the specificity of the used anti-MAP mouse monoclonal antibodies. The immunocytochemical data demonstrated a rostral-to-caudal and ventral-to-dorsal gradient in the expression of MAP1b/2 within the developing spinal cord. In the matrix layer, MAP1b was found in a distinct radial pattern distributed between the membrana limitans interna and externa between embryonal day (E)12 and E15. Immunostaining for vimentin revealed that this MAP1b pattern was morphologically and topographically different from the radial glial pattern which was present in the matrix layer between E13 and E19. The ventral-to-dorsal developmental gradient of the MAP1b staining in the spinal cord matrix layer indicates a close involvement of MAP1b either in the organisation of the microtubules in the cytoplasmatic extensions of the proliferating neuroblasts or neuroblast mitosis. MAP2 could not be detected in the developing matrix layer. In the mantle and marginal layer, MAP1b was abundantly present between E12 and postnatal day (P)0. After birth, the staining intensity for MAP1b gradually decreased in both layers towards a faint appearance at maturity. The distribution patterns suggest an involvement of MAP1b in the maturation of the motor neurons, the contralaterally and ipsilaterally projecting axons and the ascending and descending long axons of the rat spinal cord. MAP2 was present in the spinal cord grey matter between E12 and maturity, which reflects a role for MAP2 in the development as well as in the maintenance of microtubules. The present description of the expression patterns of MAP1b and 2 in the developing spinal cord suggests important roles of the two proteins in various morphogenetic events. The findings may serve as the basis for future studies on the function of MAP1b and 2 in the development of the central nervous system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The membrane-associated protein SCG10 is expressed specifically by neuronal cells. Recent experiments have suggested that it promotes neurite outgrowth by increasing microtubule dynamics in growth cones. SCG10 is related to the ubiquitous but neuron-enriched cytosolic protein stathmin. To better understand the role played by SCG10 and stathmin in vivo, we have analyzed the expression and localization of these proteins in both the olfactory epithelium and the olfactory bulb in developing and adult rats, as well as in adult bulbectomized rats. The olfactory epithelium is exceptional in that olfactory receptor neurons constantly regenerate and reinnervate the olfactory bulb throughout animal life-span. SCG10 and stathmin expression in the olfactory receptor neurons was found to be regulated during embryonic and postnatal development and to correlate with neuronal maturation. Whereas SCG10 expression was restricted to immature olfactory receptor neurons (GAP-43-positive, olfactory marker protein-negative), stathmin was also expressed by the basal cells. In the olfactory bulb of postnatal and adult rats, a moderate to strong SCG10 immunoreactivity was present in the olfactory nerve layer, whereas no labeling was detected in the glomerular layer. Olfactory glomeruli also showed no apparent immunoreactivity for several cytoskeletal proteins such as tubulin and microtubule-associated proteins. In unilaterally bulbectomized rats, SCG10 and stathmin were seen to be up-regulated in the regenerating olfactory epithelium at postsurgery stages corresponding to olfactory axon regeneration. Our data strongly suggest that, in vivo, both SCG10 and stathmin may play a role in axonal outgrowth during ontogenesis as well as during axonal regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pendant la grossesse, les hormones stéroïdes jouent un rôle indispensable dans la régulation des principales manifestations physiologiques telles que la reconnaissance maternelle de la gestation, la réceptivité de l'endomètre, le début du développement embryonnaire ainsi que le maintien de la gestation. Cependant, on sait très peu sur la production de ces hormones et les principaux facteurs des voies intracellulaires impliqués dans le processus de stéroïdogenèse dans le placenta bovin pendant les stades initiaux et plus avancés de la gestation. Par ailleurs, certaines anomalies du placenta chez les bovins suite à une mauvaise production de stéroïdes n'ont pas encore été démontrées. Les objectifs de cette thèse étaient donc de : 1) déterminer la présence et la localisation des principales protéines stéroïdiennes dans le placenta de bovins provenant de gestations de 50 à 120 jours, 2) comparer l'expression placentaire d'une série de gènes et de protéines stéroïdiennes entre une gestation impliquant un transfert de noyaux de cellules somatiques (SCNT) et une gestation non-clonale; 3) étudier l'impact des hormones trophiques et des seconds messagers sur la stéroïdogenèse dans le placenta bovin à 140 +10 jours de gestation. L’utilisation de techniques d’immunohistochimie, d’immunobuvardage et de PCR quantitatif nous a permis d’évaluer la présence d'un large éventail de gènes stéroïdiens (STAR, CYP11A1, HSD3B1, CYP17A1 et SCARB1) qui participent au transport du cholestérol et dans la production de différents types de stéroïdes. Dans cette thèse, nous avons démontré la capacité du placenta bovin d’initier la stéroïdogenèse au début de la gestation et nous avons également déterminé les principales cellules impliquées dans ce processus. Nous avons constaté que les tissus maternels expriment les principaux marqueurs de stéroïdogenèse suggérant une plus grande capacité stéroïdogénique que les tissus fœtaux. En outre, un modèle d'expression des protéines complémentaires stéroïdogéniques entre la caroncule et le cotylédon a été observé, indiquant que la stéroïdogenèse placentaire exige une communication cellule à cellule entre les cellules de la mère et du fœtus. Après avoir démontré les principales cellules impliquées dans la synthèse des hormones stéroïdiennes dans le placenta bovin en début de gestation, nous avons ensuite étudié les modifications possibles de la stéroïdogenèse dans les tissus SCNT cotylédonaires à 40 jours de gestation. Nous avons identifié d'importantes modifications dans l'expression des gènes STAR, CYP11A1, HSD3B1, CYP17A1, et SULT1E1. Conséquemment, nous postulons que l'expression réduite des gènes stéroïdiens peut provoquer une insuffisance de la biosynthèse des hormones stéroïdiennes, ce qui pourrait contribuer à un développement anormal du placenta et du fœtus dans les gestations SCNT à court ou long terme. Finalement, nous avons développé un modèle efficace de culture d’explants de placentome qui nous a permis d'explorer les mécanismes sous-jacents spécifiques à la stéroïdogenèse placentaire. Nous avons exploré l'effet stimulant des hormones trophiques et différents messagers secondaires sur l'expression de différentes protéines stéroïdogéniques ainsi que le taux de progestérone (P4) dans les explants de placentome. En utilisant les techniques de RIA et de PCR quantitatif, nous avons constaté que même si les analogues de l'hormone lutéinisante (hCG) ont un effet stimulant sur plusieurs gènes stéroïdiens, le calcium ionophore est le principal modulateur dans la synthèse de la P4. Ces résultats suggèrent que dans le placenta bovin, la synthèse de la P4 est modulée principalement par l'afflux de calcium intracellulaire, et apparemment les nucléotides cycliques ne semblent pas contrôler ce processus. En conclusion, cette étude contribue de manière significative à une meilleure compréhension des mécanismes d'entraînement de la synthèse des stéroïdes placentaires au début de la gestation et permet aussi d’apporter de nouveaux éclairages sur l'importance des stéroïdes placentaires dans la régulation du développement du placenta et du fœtus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dystrophin, the protein product defective in Duchenne muscular dystrophy (DMD), is present in all types of muscle and in the brain. The function of the protein is unknown and its role in the brain is unclear, although 30% of DMD patients show nonprogressive mental retardation. We have therefore studied the localisation of dystrophin in cultures of normal and DMD human fetal neurons using antibodies raised to different regions of the protein. Dystrophin immunoreactivity was demonstrated in the soma and axon hillock of normal neurons and appeared to be associated with the inner part of the cell membrane, although some intracellular staining was also observed. Positive dystrophin staining was present only in cells with fully developed neuronal features, although not all the neurons were positive. Glial cells were always negative for the antigen. Immunostaining with antibodies to the brain spectrins indicate that the dystrophin antibodies did not crossreact with these proteins. The possibility of cross-reactivity with other proteins is discussed. Studies of cells cultured from a DMD fetus also showed specific dystrophin immunostaining in neurons, although the muscle was generally negative for dystrophin. However, the localisation of dystrophin immunostaining and that of the brain spectrins and neurofilaments appeared abnormal, as did the overall morphology of the cells. This suggests that dystrophin may play a role during brain development and dystrophin deficiency results in abnormal neuronal features. This would be consistent with the nonprogressive nature of the mental retardation observed in DMD patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human contains 49 ATP-binding cassette (ABC) transporter genes and the multidrug resistance associated proteins (MRP1/ABCC1, MRP2/ABCC2, MRP3/ABCC3, MRP4/ABCC4, MRP5/ABCC5, MRP6/ABCC6, MRP7/ABCC10, MRP8/ABCC11 and MRP9/ABCC12) belong to the ABCC family which contains 13 members. ABCC7 is cystic fibrosis transmembrane conductance regulator; ABCC8 and ABCC9 are the sulfonylurea receptors which constitute the ATP-sensing subunits of a complex potassium channel. MRP10/ABCC13 is clearly a pseudo-gene which encodes a truncated protein that is highly expressed in fetal human liver with the highest similarity to MRP2/ABCC2 but without transporting activity. These transporters are localized to the apical and/or basolateral membrane of the hepatocytes, enterocytes, renal proximal tubule cells and endothelial cells of the blood-brain barrier. MRP/ABCC members transport a structurally diverse array of important endogenous substances and xenobiotics and their metabolites (in particular conjugates) with different substrate specificity and transport kinetics. The human MRP/ABCC transporters except MRP9/ABCC12 are all able to transport organic anions, such as drugs conjugated to glutathione, sulphate or glucuronate. In addition, selected MRP/ABCC members may transport a variety of endogenous compounds, such as leukotriene C(4) (LTC(4) by MRP1/ABCC1), bilirubin glucuronides (MRP2/ABCC2, and MRP3/ABCC3), prostaglandins E1 and E2 (MRP4/ABCC4), cGMP (MRP4/ABCC4, MRP5/ABCC5, and MRP8/ABCC11), and several glucuronosyl-, or sulfatidyl steroids. In vitro, the MRP/ABCC transporters can collectively confer resistance to natural product anticancer drugs and their conjugated metabolites, platinum compounds, folate antimetabolites, nucleoside and nucleotide analogs, arsenical and antimonial oxyanions, peptide-based agents, and in concert with alterations in phase II conjugating or biosynthetic enzymes, classical alkylating agents, alkylating agents. Several MRP/ABCC members (MRPs 1-3) are associated with tumor resistance which is often caused by an increased efflux and decreased intracellular accumulation of natural product anticancer drugs and other anticancer agents. Drug targeting of these transporters to overcome MRP/ABCC-mediated multidrug resistance may play a role in cancer chemotherapy. Most MRP/ABCC transporters are subject to inhibition by a variety of compounds. Based on currently available preclinical and limited clinical data, it can be expected that modulation of MRP members may represent a useful approach in the management of anticancer and antimicrobial drug resistance and possibly of inflammatory diseases and other diseases. A better understanding of their substrates and inhibitors has important implications in development of drugs for treatment of cancer and inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transition from fetal to postnatal life involves clearance of liquid from the lung and airways, and rapid formation of a functional residual capacity. Despite the importance of the diaphragm in this process, the impact of birth on the mechanical and functional activity of its muscle fibers is not known. This study determined the contractile characteristics of individual “skinned” diaphragm fibers from 70 days (0.47) gestation to after birth in sheep. Based on differential sensitivity to the divalent ions calcium (Ca2+) and strontium (Sr2+), all fibers in the fetal diaphragm were classified as “fast,” whereas fibers from the adult sheep diaphragm exhibited a “hybrid” phenotype where both “fast” and “slow” characteristics were present within each single fiber. Transition to the hybrid phenotype occurred at birth, was evident after only 40 min of spontaneous breathing, and could be induced by simple mechanical stretch of diaphragm fibers from near-term fetuses (∼147 days gestation). Both physical stretch of isolated fibers, and mechanical ventilation of the fetal diaphragm in situ, significantly increased sensitivity to Ca2+ and Sr2+, maximum force generating capacity, and decreased passive tension in near-term and preterm fetuses; however, only fibers from near-term fetuses showed a complete transition to a “hybrid” activation profile. These findings suggest that stretch associated with the transition from a liquid to air-filled lung at birth induces physical changes of proteins determining the activation and elastic properties of the diaphragm. These changes may allow the diaphragm to meet the increased mechanical demands of breathing immediately after birth.