918 resultados para FORÇA MUSCULAR


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Society provides messages about how people should ideally look and previous research has indicated these messages, both the actual messages provided and the perception of the message, influence body image. Research into male body image has shown males are concerned with having a lean and muscular body and as such, may want to decrease fat and increase their muscles. This paper explored the influence of a range of messages from parents, peers, and the media on a number of different measures of 362 adolescent boys’ body image and body change strategies. Specifically, messages about shape, food, exercise, losing weight and increasing muscles were explored in relation to satisfaction with weight and muscles, and the use of strategies to decrease weight and increase muscles. The findings indicated that parental messages were the strongest influence on body image and that parents, the media, and to a lesser extent messages from male friends were the strongest predictors of body change strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

According to the unrevised Reinforcement Sensitivity Theory two motivational systems shape personality: a behavioural approach system (BAS) that determines sensitivity to rewards, and a behavioural inhibition system (BIS) that determines sensitivity to punishments. The role of reinforcement sensitivity in body change behaviour in males was explored with a non-clinical sample of 120 men aged 18–40 years. Self-reported symptoms of unhealthy weight loss (weight preoccupation, fasting, bingeing/purging) and body development (muscle/size preoccupation, obligatory exercise, use of chemical supplements) were regressed on measures of BAS and BIS sensitivity. Significant relationships were observed between BAS sensitivity and body development, and between BIS sensitivity and weight loss. These relationships were mediated by internalization of the athletic/muscular ideal, body comparisons, the importance of achieving one’s ideal or ‘best possible’ body (in the case of BAS but not BIS), and body dissatisfaction (in the case of BIS but not BAS). These results support the proposition that body development in males is influenced by sensitivity to rewards associated with achieving a certain body shape, and that weight loss is influenced by sensitivity to punishments associated with possessing an unsatisfactory body shape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE -- To examine the effect of high-intensity progressive resistance training combined with moderate weight loss on glycemic control and body composition in older patients with type 2 diabetes.

RESEARCH DESIGN AND METHODS -- Sedentary, overweight men and women with type 2 diabetes, aged 60-80 years (n = 36), were randomized to high-intensity progressive resistance training plus moderate weight loss (RT & WL group) or moderate weight loss plus a control program (WL group). Clinical and laboratory measurements were assessed at 0, 3, and 6 months.

RESULTS -- HbA.1c fell significantly more in RT & WL than WL at 3 months (0.6 ± or -] 0.7 vs. 0.07 ± 0.8%, P < 0.05) and 6 months (1.2 ±1.0 vs. 0.4 ±0.8, P < 0.05). Similar reductions in body weight (RT & WL 2.5 ±2.9 vs. WL 3.1±2.1 kg) and fat mass (RT & WL 2.4 ± 2.7 vs. WL 2.7±2.5 kg) were observed after 6 months. In contrast, lean body mass (LBM) increased in the RT & WL group (0.5 ±1.1 kg) and decreased in the WL group (0.4±1.0) after 6 months (P < 0.05). There were no between-group differences for fasting glucose, insulin, serum lipids and lipoproteins, or resting blood pressure.

CONCLUSIONS -- High-intensity progressive resistance training, in combination with moderate weight loss, was effective in improving glycemic control in older patients with type 2 diabetes. Additional benefits of improved muscular strength and LBM identify high-intensity resistance training as a feasible and effective component in the management program for older patients with type 2 diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: We explored the extent to which changes in emotional states following exposure to images of idealized bodies predict unhealthy body change attitudes and behaviors in women and men, and whether particular psychological traits mediate these effects. Method: One hundred thirty-three women and 93 men were assessed for unhealthy attitudes and behaviors related to body weight and muscles using the Eating Disorder Inventory-2 (EDI-2), the Obligatory Exercise Questionnaire, and the strategies to increase muscles subscale of the Body Change Inventory. Psychological traits assessed included body dissatisfaction (EDI-2), internalization of the thin/athletic ideal (Sociocultural Attitudes Towards Appearance Questionnaire-3), body comparison (Body Comparison Scale), self-esteem (Rosenberg Self-Esteem Inventory), depression (Beck Depression Inventory-II), and identity confusion (Self-Concept Clarity Scale). Participants were then exposed to photographs of thin female models and muscular male models, and visual analogue scales were used to measure changes in postexposure state body dissatisfaction, anger, anxiety, and depression.
Results: Postexposure increases in state anger, anxiety, depression, and body dissatisfaction correlated with drive for thinness and disordered eating symptomatology in women, while postexposure increases in state body dissatisfaction correlated with muscle development in men. Analyses revealed that internalization and body comparison mediated these relationships, with trait body dissatisfaction, trait depression, self-esteem, and self-concept/identity confusion serving as mediators for women only. Conclusion: These results are indicative of gender differences in: (a) reactions to idealized bodies; (b) psychological traits that predispose individuals to experience these reactions; and (c) types of body change behavior that are associated with these reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An increasing number of researchers have examined body image concerns, disordered eating, and other behaviors associated with increasing muscle size among men from different cultural groups. However, to date there has been no synthesis or evaluation of these studies. In this paper we specifically review studies which have included a comparison between males from different cultural groups with White males on body image concerns or other related behaviors. The groups include Blacks, Hispanic Americans, Asians, Native Americans, Pacific Islanders, and men from Middle Eastern countries. Overall, evidence suggests that males from a range of cultural groups engage in more extreme body change strategies and binge eating than Whites. On the other hand, there is no consistent pattern which summarizes the nature of body image concerns across the different cultures. Mediating and/or moderating variables are proposed to account for the inconsistent findings. These include body build, levels of acculturation, socio-economic status, media exposure, and internalization of the muscular and lean body ideal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To examine whether rosiglitazone alters gene expression of some key genes involved in mitochondrial biogenesis and oxidative capacity in skeletal muscle of type 2 diabetic patients, and whether this is associated with alterations in skeletal muscle oxidative capacity and lipid content.

Design: Skeletal muscle gene expression, mitochondrial protein content, oxidative capacity and lipid accumulation were measured in muscle biopsies obtained from diabetic patients, before and after 8 weeks of rosiglitazone treatment, and matched controls. Furthermore, whole-body insulin sensitivity and substrate utilization were assessed.

Subjects: Ten obese type 2 diabetic patients and 10 obese normoglycemic controls matched for age and BMI.

Methods: Gene expression and mitochondrial protein content of complexes I–V of the respiratory chain were measured by quantitative polymerase chain reaction and Western blotting, respectively. Histochemical staining was used to quantify lipid accumulation and complex II succinate dehydrogenase (SDH) activity. Insulin sensitivity and substrate utilization were measured during a hyperinsulinemic–euglycemic clamp with indirect calorimetry.

Results: Skeletal-muscle mRNA of PGC-1a and PPARb/d – but not of other genes involved in glucose, fat and oxidative metabolism – was significantly lower in diabetic patients (Po0.01). Rosiglitazone significantly increased PGC-1a (B2.2-fold, Po0.01) and PPARb/d (B2.6-fold, Po0.01), in parallel with an increase in insulin sensitivity, SDH activity and metabolic flexibility (Po0.01). Surprisingly, none of the measured mitochondrial proteins was reduced in type 2 diabetic patients, nor affected by rosiglitazone treatment. No alterations were seen in muscular fat accumulation upon treatment.

Conclusion: These results suggest that the insulin-sensitizing effect of rosiglitazone may involve an effect on muscular oxidative capacity, via PGC-1a and PPARb/d, independent of mitochondrial protein content and/or changes in intramyocellular lipid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims/hypothesis Peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1 (PPARGC1), a coactivator regulating the transcription of genes involved in oxidative metabolism, is downregulated in patients with type 2 diabetes and in their first-degree relatives. Whether this downregulation is a cause or effect of early aberrations in the development of insulin resistance, such as disturbances in fat metabolism, is unknown. We examined whether lipid-induced insulin resistance was associated with downregulation of expression of skeletal muscle genes involved in oxidative metabolism and mitochondrial biogenesis in humans.
Materials and methods Nine healthy lean male subjects underwent a 6-h hyperinsulinaemic–euglycaemic clamp with simultaneous infusion of either a lipid emulsion or glycerol as a control. Blood was sampled at regular time points and muscle biopsies were taken before and after every test. Intramuscular triacylglycerol (IMTG) content was determined by Oil Red O staining and gene expression was measured by quantitative PCR.
Results Lipid infusion resulted in a ∼2.7-fold increase in plasma NEFA levels and a 31±6% decrease in insulin sensitivity (p=0.001). The infusion of lipids resulted in a ∼1.6-fold increase in IMTG (p=0.02), whereas during the clamp with glycerol infusion IMTG tended to decrease to ∼53% of preinfusion levels (p=0.065). Lipid infusion decreased PPARGC1A, PPARGC1B and PPARA expression to ∼61, 77 and ∼52% of basal values respectively, whereas expression of uncoupling protein 3 was upregulated 1.8-fold (all p<0.05).
Conclusions/interpretation Acute elevation of plasma NEFA levels, leading to muscular fat accumulation and insulin resistance, downregulates PPARGC1A, PPARGC1B and PPARA expression, suggesting that the decrease in PPARGC1 expression observed in the (pre)diabetic state may be the result, rather than the cause of lipid-induced insulin resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: The mitochondrial uncoupling protein-3 (UCP3) is able to lower the proton gradient across the inner mitochondrial membrane, thereby uncoupling substrate oxidation from ATP production and dissipating energy as heat. What the effect of endurance training on UCP3 is, is still  controversial. Endurance-trained athletes are characterized by lower levels of UCP3, but longitudinal studies in rodents reported no effect of endurance training on muscular UCP3 levels. Here, we examined the effect of a 2-week training programme on skeletal muscle UCP3 protein content in untrained human subjects, and hypothesized that UCP3 will be reduced after the training programme. Methods: Nine untrained men [age: 23.3±3.2 years; BMI: 22.6±2.6 kg m-2; maximal power output (Wmax): 3.8±0.6 W kg-1 body weight] trained for 2 weeks. Before and at least 72 h after the training period, muscle biopsies were taken for determination of UCP3 protein content. Results: UCP3 protein content tended to be lower after the training programme [95±10 vs. 109±12 arbitrary units (AU), P= 0.08]. Cytochrome c content tended to increase with 33% in response to endurance training (52± 6 vs. 39± 6 AU, P = 0.08). The ratio UCP3 relative to cytochrome c tended to decrease significantly upon endurance training (2.0±0.4 vs. 3.2±0.6 AU, P = 0.01). Conclusion: A short-term (2-week) endurance training programme decreased UCP3 protein levels and significantly reduced the ratio of UCP3 to cytochrome c.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence suggests that static stretching inhibits muscular power. However, research does not reflect practice whereby individuals follow up stretching with secondary activity. This study investigated muscular power following stretching, and after a second bout of activity. Participants (n = 13) completed 3 randomized testing sessions which included a 5 min warm-up, followed by a vertical jump (VJ) on a force platform; an intervention (static stretching, dynamic, or control), followed by a second VJ. Participants then completed a series of movements, followed by a VJ, up to 60 min post activity. Immediately following the intervention, there was a 10.7% difference in VJ between static and dynamic stretching. The second warm up bout increased VJ height following the dynamic intervention, whereas the static stretching condition did not show any  differences. The novel finding from this study demonstrates a second exercise bout does not reverse the effects of static stretching and is still detrimental to VJ.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From a cell signaling perspective, short-duration intense muscular work is typically associated with resistance training and linked to pathways that stimulate growth. However, brief repeated sessions of sprint or high-intensity interval exercise induce rapid phenotypic changes that resemble traditional endurance training. We tested the hypothesis that an acute session of intense intermittent cycle exercise would activate signaling cascades linked to mitochondrialbiogenesis in human skeletal muscle. Biopsies (vastus lateralis) were obtained from six young men who performed four 30-s "all out" exercise bouts interspersed with 4 min of rest (<80 kJ total work). Phosphorylation of AMP-activated protein kinase (AMPK; subunits {alpha}1 and {alpha}2) and the p38 mitogen-activated protein kinase (MAPK) was higher (P ≤ 0.05) immediately after bout 4 vs. preexercise. Peroxisome proliferator-activated receptor-{gamma} coactivator-1{alpha}(PGC-1{alpha}) mRNA was increased approximately twofold above rest after 3 h of recovery (P ≤ 0.05); however, PGC-1{alpha}protein content was unchanged. In contrast, phosphorylation of protein kinase B/Akt (Thr308 and Ser473) tended to decrease, and downstream targets linked to hypertrophy (p70 ribosomal S6 kinase and 4E binding protein 1) were unchanged after exercise and recovery. We conclude that signaling through AMPK and p38 MAPK to PGC-1{alpha} may explain in part the metabolic remodeling induced by low-volume intense interval exercise, including mitochondrial biogenesis and an increased capacity for glucose and fatty acid oxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcineurin activation ameliorates the dystrophic pathology of hindlimb muscles in mdx mice and decreases their susceptibility to contraction damage. In mdx mice, the diaphragm is more severely affected than hindlimb muscles and more representative of Duchenne muscular dystrophy. The constitutively active calcineurin A transgene (CnA) was overexpressed in skeletal muscles of mdx (mdx CnA*) mice to test whether muscle morphology and function would be improved. Contractile function of diaphragm strips and extensor digitorum longus and soleus muscles from adult mdx CnA* and mdx mice was examined in vitro. Hindlimb muscles from mdx CnA* mice had a prolonged twitch time course and were more resistant to fatigue. Because of a slower phenotype and a decrease in fiber cross-sectional area, normalized force was lower in fast- and slow-twitch muscles of mdx CnA* than mdx mice. In the diaphragm, despite a slower phenotype and a 35% reduction in fiber size, normalized force was preserved. This was likely mediated by the reduction in the area of the diaphragm undergoing degeneration (i.e., mononuclear cell and connective and adipose tissue infiltration). The proportion of centrally nucleated fibers was reduced in mdx CnA* compared with mdx mice, indicative of improved myofiber viability. In hindlimb muscles of mdx mice, calcineurin activation increased expression of markers of regeneration, particularly developmental myosin heavy chain isoform and myocyte enhancer factor 2A. Thus activation of the calcineurin signal transduction pathway has potential to ameliorate the mdx pathophysiology, especially in the diaphragm, through its effects on muscle degeneration and regeneration and endurance capacity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcineurin activity is essential for successful skeletal muscle regeneration in young mdx mice and in wild type mice following myotoxic injury and cryodamage. In mature myofibres of adult mdx mice, calcineurin stimulation can ameliorate the dystrophic pathology. The aim of this study was to test the hypothesis that the more severe dystrophic pathology of the diaphragm compared with hindlimb muscles of mdx mice could be attributed to aberrant calcineurin signalling and that due to ongoing regeneration calcineurin activity would be greater in muscles of adult mdx than wild type mice. Differences in markers of regeneration between tibialis anterior and diaphragm muscles were also characterised, to determine whether there was an association between regeneration efficacy and calcineurin activity in dystrophic muscles. In diaphragm muscles of adult mdx mice, the proportion of centrally nucleated fibres and developmental myosin heavy chain protein expression was lower and myogenin protein expression was higher than in tibialis anterior muscles. Calcineurin and activated NFATc1 protein content and calcineurin phosphatase activity were higher in muscles from mdx than wild type mice and calcineurin activation was greater in diaphragm than tibialis anterior muscles of mdx mice. Thus, despite greater calcineurin activity in diaphragm compared to hindlimb muscles, regeneration events downstream of myoblast differentiation and mediated by the injured myofibre were severely compromised.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although mdx mice share the same genetic defect and lack dystrophin expression as in Duchenne muscular dystrophy (DMD), their limb muscles have a high regenerative capacity that ensures a more benign phenotype and essentially normal function. The cellular pathways responsible for this enhanced regenerative capacity are unknown. We tested the hypothesis that the calcineurin signal transduction pathway is essential for the successful regeneration following severe degeneration observed in the limb muscles of young mdx mice (2–4 weeks old) and that inhibition of this pathway using cyclosporine A (CsA) would exacerbate the dystrophic pathology. Eighteen-day-old mdx and C57BL/10 mice were treated with CsA for 16 days. CsA administration severely disrupted muscle regeneration in mdx mice, but had minimal effect in C57BL/10 mice. Muscles from CsA-treated mdx mice had fewer centrally nucleated fibers and extensive collagen, connective tissue, and mononuclear cell infiltration than muscles from vehicle-treated littermates. The deleterious effects of CsA on muscle morphology were accompanied by a 30–35% decrease in maximal force producing capacity. Taken together, these observations indicate that the calcineurin signal transduction pathway is a significant determinant of successful skeletal muscle regeneration in young mdx mice. Up-regulating this pathway may have clinical significance for DMD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elite athletes require a greater dietary protein intake than recreationally active people to maintain optimal muscular function. The timing of protein ingestion relative to exercise is critical to maximizing its physiological impact on skeletal muscles. Sports protein supplements provide a convenient means of supplying athletes with an adequate and timely source of quality dietary protein. There is now strong evidence that not all dietary proteins are equipotent in their effects on various aspects of athletic performance and specific protein isolates can provide benefits to athletes beyond simple supply of nutritional amino acids. Thus, there is an opportunity to develop new functional protein supplements to maximize athletic performance. This paper outlines the clinical evidence for the benefits of dairy proteins in sports performance and describes the development of new dairy protein supplements to build muscle strength, and to expedite recovery of strength following muscle-damaging eccentric exercise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Fibromyalgia (FM) is a soft-tissue disease of unknown origin. It causes soft-tissue pain and stiffness, often with chronic fatigue, disrupted sleep, headaches and irritable bowel. Fibromyalgia affects an estimated six million Americans of which 80 to 90 percent are female.

Objective: To determine whether dietary intake of protein, Tryptophan, and Branched Chain Amino Acids (BCAA) meet Dietary Reference Intake (DRI) recommendations, and whether there is a difference in animal and vegetable protein intake in subjects with FM compared to healthy controls.

Methods: Thirty subjects with FM and an equal number of controls completed a Food Frequency Questionnaire (FFQ) regarding dietary intake over the previous month. The FFQs were then computer analyzed to determine dietary intake.

Results: Protein intake of all subjects was more than adequate to meet DRI recommendations and there was no significant difference in intake of protein, BCAA, Tryptophan, animal or vegetable protein. Subjects with FM had significantly higher body weight and Body Mass Index (BMI) than controls, and reported having a higher incidence of Irritable Bowel Syndrome (IBS) symptoms than controls.

Conclusion
: There was no significant difference in dietary intake of protein, Tryptophan, BCAA, or amounts of animal or vegetable protein in FM subjects compared to healthy controls. Significant differences in body weight and BMI in FM subjects might be related to less physical activity or possibly to malabsorption problems associated with IBS. Malabsorption related to IBS might increase the potential for protein malnutrition, FM, and associated symptoms like chronic fatigue.