171 resultados para Enzymology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reduced galactose 1-phosphate uridylyltransferase (GAIT) activity is associated with the genetic disease type 1 galactosemia. This results in an increase in the cellular concentration of galactose 1-phosphate. The accumulation of this toxic metabolite, combined with aberrant glycoprotein and glycolipid biosynthesis, is likely to be the major factor in molecular pathology. The mechanism of GAIT was established through classical enzymological methods to be a substituted enzyme in which the reaction with UDP-glucose results in the formation of a covalent, UMP-histidine adduct in the active site. The uridylated enzyme can then react with galactose 1-phosphate to form UDP-galactose. The structure of the enzyme from Escherichia coli reveals a homodimer containing one zinc (II) and one iron (11) ion per subunit. This enzymological and structural knowledge provides the basis for understanding the biochemistry of this critical step in the Leloir pathway. However, a high-resolution crystal structure of human GAIT is required to assist greater understanding of the effects of disease-associated mutations. (C) 2011 IUBMB IUBMB Life, 63(9): 694-700, 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate measurement of the quantitative aspects of enzyme-catalysed reactions
is critical for a deeper understanding of their mechanisms, for their exploitation in biotechnology and for targeting enzymes by drug-like molecules. It is important to move beyond basic enzyme kinetics as encapsulated in the Michaelis-Menten equation. The type and magnitude of inhibition should be determined. Since the majority of enzyme-catalysed reactions involve more than one substrate, it is critical to understand how to treat these reactions quantitatively and how their kinetic behaviour depends on the type of mechanism occurring.
Some reactions do not conform to “standard” Michaelis-Menten treatment and exhibit phenomena such as cooperativity. Again it is important to put these phenomena onto a quantitative basis. Similarly the treatment of the effects of pH on enzymes is often vague and uninformative without a proper quantitative treatment. This review brings together tools and approaches for dealing with enzymes quantitatively together with original references for these approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1), catalyzing the intracellular activation of cortisone to cortisol, is currently considered a promising target to treat patients with metabolic syndrome; hence, there is considerable interest in the development of selective inhibitors. For preclinical tests of such inhibitors, the characteristics of 11beta-HSD1 from the commonly used species have to be known. Therefore, we determined differences in substrate affinity and inhibitor effects for 11beta-HSD1 from six species. The differences in catalytic activities with cortisone and 11-dehydrocorticosterone were rather modest. Human, hamster and guinea-pig 11beta-HSD1 displayed the highest catalytic efficiency in the oxoreduction of cortisone, while mouse and rat showed intermediate and dog the lowest activity. Murine 11beta-HSD1 most efficiently reduced 11-dehydrocorticosterone, while the enzyme from dog showed lower activity than those from the other species. 7-ketocholesterol (7KC) was stereospecifically converted to 7beta-hydroxycholesterol by recombinant 11beta-HSD1 from all species analyzed except hamster, which showed a slight preference for the formation of 7alpha-hydroxycholesterol. Importantly, guinea-pig and canine 11beta-HSD1 displayed very low 7-oxoreductase activities. Furthermore, we demonstrate significant species-specific variability in the potency of various 11beta-HSD1 inhibitors, including endogenous compounds, natural chemicals and pharmaceutical compounds. The results suggest significant differences in the three-dimensional organization of the hydrophobic substrate-binding pocket of 11beta-HSD1, and they emphasize that species-specific variability must be considered in the interpretation of results obtained from different animal experiments. The assessment of such differences, by cell-based test systems, may help to choose the appropriate animal for safety and efficacy studies of novel potential drug candidates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a genome-scanning approach to search for oncogenes, a recent report identifies somatic mutations in the signaling gene BRAF that are particularly prevalent in melanoma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cancer Genome Project intends to search every human gene for cancer-related mutations. Its first success is the discovery of such mutations in the BRAF gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Migraine is a chronic disabling neurovascular condition that may in part be caused by endothelial and cerebrovascular disruption induced by hyperhomocysteinaemia. We have previously provided evidence indicating that reduction of homocysteine by vitamin supplementation can reduce the occurrence of migraine in women. The current study examined the genotypic effects of methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) gene variants on the occurrence of migraine in response to vitamin supplementation. METHODS: This was a 6-month randomized, double-blinded placebo-controlled trial of daily vitamin B supplementation (B(6), B(9) and B(12)) on reduction of homocysteine and of the occurrence of migraine in 206 female patients diagnosed with migraine with aura. RESULTS: Vitamin supplementation significantly reduced homocysteine levels (P<0.001), severity of headache in migraine (P=0.017) and high migraine disability (P=0.022) in migraineurs compared with the placebo effect (P>0.1). When the vitamin-treated group was stratified by genotype, the C allele carriers of the MTHFR C677T variant showed a higher reduction in homocysteine levels (P<0.001), severity of pain in migraine (P=0.01) and percentage of high migraine disability (P=0.009) compared with those with the TT genotypes. Similarly, the A allele carriers of the MTRR A66G variants showed a higher level of reduction in homocysteine levels (P<0.001), severity of pain in migraine (P=0.002) and percentage of high migraine disability (P=0.006) compared with those with the GG genotypes. Genotypic analysis for both genes combined indicated that the treatment effect modification of the MTRR variant was independent of the MTHFR variant. CONCLUSION: This provided further evidence that vitamin supplementation is effective in reducing migraine and also that both MTHFR and MTRR gene variants are acting independently to influence treatment response in female migraineurs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To optimize the animal model of liver injury that can properly represent the pathological characteristics of dampness-heat jaundice syndrome of traditional Chinese medicine. METHODS: The liver injury in the model rat was induced by alpha-naphthylisothiocyanate (ANIT) and carbon tetrachloride (CCl(4) ) respectively, and the effects of Yinchenhao Decoction (, YCHD), a proved effective Chinese medical formula for treating the dampness-heat jaundice syndrome in clinic, on the two liver injury models were evaluated by analyzing the serum level of alanine aminotransferase (ALT), asparate aminotransferase (AST), alkaline phosphatase (ALP), malondialchehyche (MDA), total bilirubin (T-BIL), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) as well as the ratio of liver weight to body weight. The experimental data were analyzed by principal component analytical method of pattern recognition. RESULTS: The ratio of liver weight to body weight was significantly elevated in the ANIT and CCl(4) groups when compared with that in the normal control (P<0.01). The contents of ALT and T-BIL were significantly higher in the ANIT group than in the normal control (P<0.05,P<0.01), and the levels of AST, ALT and ALP were significantly elevated in CCl(4) group relative to those in the normal control P<0.01). In the YCHD group, the increase in AST, ALT and ALP levels was significantly reduced (P<0.05, P<0.01), but with no significant increase in serum T-BIL. In the CCl(4) intoxicated group, the MDA content was significantly increased and SOD, GSH-PX activities decreased significantly compared with those in the normal control group, respectively (P<0.01). The increase in MDA induced by CCl(4) was significantly reduced by YCHD P<0.05). CONCLUSION: YCHD showed significant effects on preventing liver injury progression induced by CCl(4), and the closest or most suitable animal model for damp-heat jaundice syndrome may be the one induced by CCl(4).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 'histone code' is a well-established hypothesis describing the idea that specific patterns of post-translational modifications to histones act like a molecular 'code' recognized and used by non-histone proteins to regulate specific chromatin functions. One modification, which has received significant attention, is that of histone acetylation. The enzymes that regulate this modification are described as lysine acetyltransferases or KATs, and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. The pro-inflammatory environment is increasingly being recognized as a critical element for both degenerative diseases and cancer. The present review will discuss the current knowledge surrounding the clinical potential and current development of histone deacetylases for the treatment of diseases for which a pro-inflammatory environment plays important roles, and the molecular mechanisms by which such inhibitors may play important functions in modulating the pro-inflammatory environment. © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Globally, obesity and diabetes (particularly type 2 diabetes) represents a major challenge to world health. Despite decades of intense research efforts, the genetic basis involved in diabetes pathogenesis & conditions associated with obesity are still poorly understood. Recent advances have led to exciting new developments implicating epigenetics as an important mechanism underpinning diabetes and obesity related disease. One epigenetic mechanism known as the "histone code" describes the idea that specific patterns of post-translational modifications to histones act like a molecular "code" recognised and used by non-histone proteins to regulate specific chromatin functions. One modification which has received significant attention is that of histone acetylation. The enzymes which regulate this modification are described as lysine acetyltransferases or KATs and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. Some of the known inhibitors of HDACs (HDACi) have also been shown to act as "chemical chaperones" to alleviate diabetic symptoms. In this review, we discuss the available evidence concerning the roles of HDACs in regulating chaperone function and how this may have implications in the management of diabetes. © 2009 Bentham Science Publishers Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants fight viral infections with enzymes that digest viral RNA, but viruses retaliate with proteins that suppress these enzymes. To boost their antiviral response plants deploy enzymes with redundant functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Double-stranded RNA (dsRNA) induces an endogenous sequence-specific RNA degradation mechanism in most eukaryotic cells. The mechanism can be harnessed to silence genes in plants by expressing self-complementary single-stranded (hairpin) RNA in which the duplexed region has the same sequence as part of the target gene's mRNA. We describe a number of plasmid vectors for generating hairpin RNAs, including those designed for high-throughput cloning, and provide protocols for their use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drosophila melanogaster, along with all insects and the vertebrates, lacks an RdRp gene. We created transgenic strains of Drosophila melanogaster in which the rrf-1 or ego-1 RdRp genes from C. elegans were placed under the control of the yeast GAL4 upstream activation sequence. Activation of the gene was performed by crossing these lines to flies carrying the GAL4 transgene under the control of various Drosophila enhancers. RT-PCR confirmed the successful expression of each RdRp gene. The resulting phenotypes indicated that introduction of the RdRp genes had no effect on D. melanogaster morphological development. © 2010 Springer Science+Business Media B.V.