918 resultados para Drug release


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We describe here the chemical synthesis and in vitro drug delivery response of polyethylene glycol (PEG)-functionalized magnetite (Fe3O4) nanoparticles, which were activated with a stable ligand, folic acid, and conjugated with an anticancer drug, doxorubicin. The functionalization and conjugation steps in the chemical synthesis were confirmed using Fourier transform infrared spectroscopy. The drug-release behavior of PEG-functionalized and folic acid-doxorubicin-conjugated magnetic nanoparticles was characterized by two stages involving an initial rapid release, followed by a controlled release. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, novel liver targeted doxorubicin (DOX) loaded alginate (ALG) nanoparticles were prepared by CaCl2 crosslinking method. Glycyrrhetinic acid (GA, a liver targeted molecule) modified alginate (GA-ALG) was synthesized in a heterogeneous system, and the structure of GA-ALG and the substitution degree of GA were analyzed by H-1 NMR, FT-IR and elemental analysis. The drug release profile under the simulated physiological condition and cytotoxicity experiments of drug-loaded GA-ALG nanoparticles were carried out in vitro. Transmission electron micrographs (TEM) and dynamic light scattering (DLS) analysis showed that drug-loaded GA-ALG nanoparticles have spherical shape structure with the mean hydrodynamic diameter around 214 +/- 11 nm.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Luminescent and mesoporous europium-doped bioactive glasses (MBG:Eu) were successfully synthesized by a two-step acid-catalyzed self-assembly process combined with hydrothermal treatment in an inorganic-organic system. The obtained MBG was performed as a drug delivery carrier to investigate the drug storage/release properties using ibuprofen (IBU) as a model drug. The structural, morphological, textural and optical properties were well characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N-2 adsorption/desorption, and photoluminescence (PL) spectra, respectively. The results reveal that the MBG exhibit the typical ordered characteristics of the hexagonal mesostructure. This composite shows sustained release profile with ibuprofen as the model drug. The IBU-loaded samples still show red luminescence of Eu3+ (D-5(0)-F-7(1, 2)) under UV irradiation, and the emission intensities of Eu3+ in the drug carrier system vary with the released amount of IBU, thus making the drug release be easily tracked and monitored by the change of the luminescence intensity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Luminescence functionalization of the ordered mesoporous SBA-15 silica was realized by depositing a YVO4:Eu3+ phosphor layer on its surface via the Pechini sol-gel process, resulting in the formation of the YVO4:Eu3+@SBA-15 composite material. This material, which combines the mesoporous structure of SBA-15 and the strong red luminescence property of YVO4:Eu3+, can be used as a novel functional drug delivery system. The structure, morphology, porosity, and optical properties of the materials were well characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, N-2 adsorption, and photoluminescence spectra. As expected, the pore volume, surface area, and pore size of SBA-15 decrease in sequence after deposition of the YVO4:Eu3+ layer and the adsorption of ibuprofen (IBU, drug). The IBU-loaded YVO4:Eu3+@SBA-15 system still shows the red emission of Eu3+ (617 nm, D-5(0)-F-7(2)) under UV irradiation and the controlled drug release property. Additionally, the emission intensity of Eu3+ increases with an increase in the cumulative released amount of IBU in the system, making the extent of drug release easily identifiable, trackable, and monitorable by the change of luminescence. The system has great potential in the drug delivery and disease therapy fields.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Luminescence functionalization of ordered mesoporous MCM-41 silica was realized by depositing a YVO4:Eu3+ phosphor layer on its surface via the Pechini sol-gel process. This material, which combines the mesoporous structure of MCM-41 and the strong red luminescence property of YVO4: Eu3+, has been studied as a host carrier for drug delivery/release systems. The structure, morphology, texture and optical properties of the materials were well characterized by x-ray diffraction ( XRD), Fourier infrared spectroscopy ( FT-IR), transmission electron microscopy ( TEM), N-2 adsorption and photoluminescence ( PL) spectra. The results indicated that the specific surface area and pore volume of MCM-41, which were directly correlated to the drug-loading amount and ibuprofen ( IBU) release rate, decreased in sequence after deposition of YVO4:Eu3+ and loading of IBU as expected. The IBU-loaded YVO4:Eu3+@ MCM-41 system still showed red luminescence under UV irradiation ( 365 nm) and a controlled release property for IBU. In addition, the emission intensity of Eu3+ increases with an increase in the cumulative released amount of IBU, making the extent of drug release easily identified, tracked and monitored by the change of luminescence, which demonstrates its potential application in drug delivery/release systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The influences of surfactants and medical drugs on the diameter size and uniformity of electrospun poly(L-lactic acid) (PLLA) fibers were examined by adding various surfactants (cationic, anionic, and nonionic) and typical drugs into the PLLA solution. Significant diameter reduction and uniformity improvement were observed. It was shown that the drugs were capsulated inside of the fibers and the drug release in the presence of proteinase K followed nearly zero-order kinetics due to the degradation of the PLLA fibers. Such ultrafine fiber mats containing drugs may find clinical applications in the future.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A coated matrix tablet formulation has been used to develop controlled release diltiazem HCl (DIL) tablets. The developed drug delivery system provided prolonged drug release rates over a defined period of time. DIL tablets prepared using dry mixing and direct compression and the core consisted of hydrophilic and hydrophobic polymers such as hydroxypropylmethylcellulose (HPMC), Eudragits RLPO/RSPO, microcrystalline cellulose, and lactose. Tablets were coated with Eudragit NE 30D, and the influence of varying the inert hydrophobic polymers and the amount of the coating polymer were investigated. The release profile of the developed formulation was described by the Higuchi model. Stability trials up to 6 months displayed excellent reproducibility.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of the current study was the development of theophylline buccal adhesive tablets using direct compression. Buccal adhesive formulations were developed using a water soluble resin with various combinations of mucoadhesive polymers. The prepared theophylline tablets were evaluated for tensile strength, swelling capacity and ex vivo mucoadhesion performance. Ex vivo mucoadhesion was assessed using porcine gingival tissue and the peak detachment forces were found to be suitable for a buccal adhesive tablet with a maximum of 1.5N approximately. The effect of formulation composition on the release pattern was also investigated. Most formulations showed theophylline controlled release profiles depended on the grade and polymer ratio. The release mechanisms were found to fit Peppas' kinetic model over a period of 5h. In general the majority of the developed formulations presented suitable adhesion and controlled drug release. Copyright © 2010 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Importance of the field: Conventional dosing methods are frequently unable to deliver the clinical requirement of the patient. The ability to control the delivery of drugs from implanted materials is difficult to achieve, but offers promise in diverse areas such as infection-resistant medical devices and 10 responsive implants for diabetics. Areas covered in this review: This review gives a broad overview of recent progress in the use of triggers that can be used to achieve modulation of drug release rates from implantable biomaterials. In particular, these can be classified as being responsive to one or more of the following stimuli: a 15 chemical species, light, heat, magnetism, ultrasound and mechanical force. What the reader will gain: An overview of the potential for triggered drug delivery to give methods for tailoring the dose, location and time of release of a wide range of drugs where traditional dosing methods are not suitable. Particular emphasis is given to recently reported systems, and important 20 historical reports are included. Take home message: The use of externally or internally applied triggers of drug delivery to biomaterials has significant potential for improved delivery modalities and infection resistance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Novel drug delivery systems (DDS) to improve the pharmacokinetic profile of hydrophobic drugs following oral administration are an area of keen interest in drug research. An ideal DDS should not adversely affect drug activity, be capable of delivering a therapeutic dose of drug, and allow homogenous drug loading and drug release. Mesoporous silica has been proposed for this application, with ibuprofen employed as the model drug. It was hypothesised that mesoporous silica MCM-41 is capable of delivering a pharmacologically therapeutic dose of ibuprofen. Ibuprofen-loaded MCM-41 can be prepared reproducibly at a drug to carrier ratio of 30% (wt/wt). The release profile was seen to be 90% within 2 h. Initial assessment of COX-1 inhibitory activity suggests the absence of adverse effects attributable to drug-carrier interaction. The results of this study provide further evidence in support of the proposed use of mesoporous silica in drug delivery.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thermoresponsive polymeric platforms are used to optimise drug delivery in pharmaceutical systems and bioactive medical devices. However, the practical application of these systems is compromised by their poor mechanical properties. This study describes the design of thermoresponsive semi-interpenetrating polymer networks (s-IPNs) based on cross-linked p(NIPAA) or p(NIPAA-co-HEMA) hydrogels containing poly(e-caprolactone) designed to address this issue. Using DSC, the lower critical solution temperature of the co-polymer and p(NIPAA) matrices were circa 34 °C and 32 °C, respectively. PCL was physically dispersed within the hydrogel matrices as confirmed using confocal scanning laser microscopy and DSC and resulted in marked changes in the mechanical properties (ultimate tensile strength, Young's modulus) without adversely compromising the elongation properties. P(NIPAA) networks containing dispersed PCL exhibited thermoresponsive swelling properties following immersion in buffer (pH 7), with the equilibrium-swelling ratio being greater at 20 °C than 37 °C and greatest for p(NIPAA)/PCL systems at 20 °C. The incorporation of PCL significantly lowered the equilibrium swelling ratio of the various networks but this was not deemed practically significant for s-IPNs based on p(NIPAA). Thermoresponsive release of metronidazole was observed from s-IPN composed of p(NIPAA)/PCL at 37 °C but not from p(NIPAA-co-HEMA)/PCL at this temperature. In all other platforms, drug release at 20 °C was significantly similar to that at 37 °C and was diffusion controlled. This study has uniquely described a strategy by which thermoresponsive drug release may be performed from polymeric platforms with highly elastic properties. It is proposed that these materials may be used clinically as bioactive endotracheal tubes, designed to offer enhanced resistance to ventilator associated pneumonia, a clinical condition associated with the use of endotracheal tubes where stimulus responsive drug release from biomaterials of significant mechanical properties would be advantageous. © 2012 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sustained-release matrix tablets based on Eudragit RL and RS were manufactured by injection moulding. The influence of process temperature; matrix composition; drug load, plasticizer level; and salt form of metoprolol: tartrate (MPT), fumarate (MPF) and succinate (MPS) on ease of processing and drug release were evaluated. Formulations composed of 70/30% Eudragit RL/MPT showed the fastest drug release, substituting part of Eudragit RL by RS resulted in slower drug release, all following first-order release kinetics. Drug load only affected drug release of matrices composed of Eudragit RS: a higher MPT concentration yielded faster release rates. Adding triethyl citrate enhanced the processability, but was detrimental to long-term stability. The process temperature and plasticizer level had no effect on drug release, whereas metoprolol salt form significantly influenced release properties. The moulded tablets had a low porosity and a smooth surface morphology. A plasticizing effect of MPT, MPS and MPF on Eudragit RS and Eudragit RL was observed via DSC and DMA. Solubility parameter assessment, thermal analysis and X-ray diffraction demonstrated the formation of a solid solution immediately after production, in which H-bonds were formed between metoprolol and Eudragit as evidenced by near-infrared spectroscopy. However, high drug loadings of MPS and MPF showed a tendency to recrystallise during storage. The in vivo performance of injection-moulded tablets was strongly dependent upon drug loading. © 2012 American Association of Pharmaceutical Scientists.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose. The pH-dependent physicochemical properties of the antimicrobial quinolone, nalidixic acid, were exploited to achieve ‘intelligent’ drug release from a potential urinary catheter coating, poly(2-hydroxyethylmethacrylate) (p(HEMA)), in direct response to the elevated pH which occurs at the onset of catheter infection.
Methods. p(HEMA) hydrogels, and reduced-hydrophilicity copolymers incorporating methyl methacrylate, were loaded with nalidixic acid by a novel, surface particulate localization method, and characterized in terms of pH-dependent drug release and microbiological activity against the common urease-producing urinary pathogen Proteus mirabilis.
Results. The pH-dependent release kinetics of surface-localized nalidixic acid were 50- and 10-fold faster at pH 9, representing the alkaline conditions induced by urease-producing urinary pathogens, compared to release at pH 5 and pH 7 respectively. Furthermore, microbiological activity against P. mirabilis was significantly enhanced after loading surface particulate nalidixic acid in comparison to p(HEMA) hydrogels conventionally loaded with dispersed drug. The more hydrophobic methyl methacrylate-containing copolymers also demonstrated this pH responsive behavior, but additionally exhibited a sustained period of zero-order release.
Conclusions. The paradigm presented here provides a system with latent, immediate infection-responsive drug release followed by prolonged zero-order antimicrobial delivery, and represents an ‘intelligent’, infection-responsive, self-sterilizing biomaterial.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

No bioadhesive patch-based system is currently marketed. This is despite an extensive number of literature reports on such systems detailing their advantages over conventional pressure sensitive adhesive-based patches in wet environments and describing successful delivery of a diverse array of drug substances. This lack of proprietary bioadhesive patches is largely due to the fact that such systems are exclusively water-based, meaning drying is difficult. In this paper we describe, for the first time, a novel multiple lamination method for production of bioadhesive patches. In contrast to patches produced using a conventional casting approach, which took 48 hours to dry, bioadhesive films prepared using the novel multiple lamination method were dried in 15?min and were folded into formed patches in a further 10?min. Patches prepared by both methods had comparable physicochemical properties. The multiple lamination method allowed supersaturation of 5-aminolevulinic acid to be achieved in formed patch matrices. However, drug release studies were unable to show an advantage for supersaturation with this particular drug, due to its water high solubility. The multiple lamination method allowed greater than 90% of incorporated nicotine to remain within formed patches, in contrast to the 48% achieved for patches prepared using a conventional casting approach. The procedure described here could readily be adapted for automation by industry. Due to the reduced time, energy and ensuing finance now required, this could lead to bioadhesive patch-based drug delivery systems becoming commercially viable. This would, in turn, mean that pathological conditions occurring in wet or moist areas of the body could now be routinely treated by prolonged site-specific drug delivery, as mediated by a commercially produced bioadhesive patch.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Representing a new category of polymer-drug conjugates, brush polymer-drug conjugates were prepared by ring-opening metathesis copolymerization. Following judicious structural design, these conjugates exhibited well-shielded drug moieties, significant water solubility, well-defined nanostructures, and acid-triggered drug release.