972 resultados para Computer algorithms


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes Question Waves, an algorithm that can be applied to social search protocols, such as Asknext or Sixearch. In this model, the queries are propagated through the social network, with faster propagation through more trustable acquaintances. Question Waves uses local information to make decisions and obtain an answer ranking. With Question Waves, the answers that arrive first are the most likely to be relevant, and we computed the correlation of answer relevance with the order of arrival to demonstrate this result. We obtained correlations equivalent to the heuristics that use global knowledge, such as profile similarity among users or the expertise value of an agent. Because Question Waves is compatible with the social search protocol Asknext, it is possible to stop a search when enough relevant answers have been found; additionally, stopping the search early only introduces a minimal risk of not obtaining the best possible answer. Furthermore, Question Waves does not require a re-ranking algorithm because the results arrive sorted

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The extensional theory of arrays is one of the most important ones for applications of SAT Modulo Theories (SMT) to hardware and software verification. Here we present a new T-solver for arrays in the context of the DPLL(T) approach to SMT. The main characteristics of our solver are: (i) no translation of writes into reads is needed, (ii) there is no axiom instantiation, and (iii) the T-solver interacts with the Boolean engine by asking to split on equality literals between indices. As far as we know, this is the first accurate description of an array solver integrated in a state-of-the-art SMT solver and, unlike most state-of-the-art solvers, it is not based on a lazy instantiation of the array axioms. Moreover, it is very competitive in practice, specially on problems that require heavy reasoning on array literals

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El problema de la regresión simbólica consiste en el aprendizaje, a partir de un conjunto muestra de datos obtenidos experimentalmente, de una función desconocida. Los métodos evolutivos han demostrado su eficiencia en la resolución de instancias de dicho problema. En este proyecto se propone una nueva estrategia evolutiva, a través de algoritmos genéticos, basada en una nueva estructura de datos denominada Straight Line Program (SLP) y que representa en este caso expresiones simbólicas. A partir de un SLP universal, que depende de una serie de parámetros cuya especialización proporciona SLP's concretos del espacio de búsqueda, la estrategia trata de encontrar los parámetros óptimos para que el SLP universal represente la función que mejor se aproxime al conjunto de puntos muestra. De manera conceptual, este proyecto consiste en un entrenamiento genético del SLP universal, utilizando los puntos muestra como conjunto de entrenamiento, para resolver el problema de la regresión simbólica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A technique for simultaneous localisation and mapping (SLAM) for large scale scenarios is presented. This solution is based on the use of independent submaps of a limited size to map large areas. In addition, a global stochastic map, containing the links between adjacent submaps, is built. The information in both levels is corrected every time a loop is closed: local maps are updated with the information from overlapping maps, and the global stochastic map is optimised by means of constrained minimisation

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Image segmentation of natural scenes constitutes a major problem in machine vision. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. This approach begins by detecting the main contours of the scene which are later used to guide a concurrent set of growing processes. A previous analysis of the seed pixels permits adjustment of the homogeneity criterion to the region's characteristics during the growing process. Since the high variability of regions representing outdoor scenes makes the classical homogeneity criteria useless, a new homogeneity criterion based on clustering analysis and convex hull construction is proposed. Experimental results have proven the reliability of the proposed approach

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We adapt the Shout and Act algorithm to Digital Objects Preservation where agents explore file systems looking for digital objects to be preserved (victims). When they find something they “shout” so that agent mates can hear it. The louder the shout, the urgent or most important the finding is. Louder shouts can also refer to closeness. We perform several experiments to show that this system works very scalably, showing that heterogeneous teams of agents outperform homogeneous ones over a wide range of tasks complexity. The target at-risk documents are MS Office documents (including an RTF file) with Excel content or in Excel format. Thus, an interesting conclusion from the experiments is that fewer heterogeneous (varying skills) agents can equal the performance of many homogeneous (combined super-skilled) agents, implying significant performance increases with lower overall cost growth. Our results impact the design of Digital Objects Preservation teams: a properly designed combination of heterogeneous teams is cheaper and more scalable when confronted with uncertain maps of digital objects that need to be preserved. A cost pyramid is proposed for engineers to use for modeling the most effective agent combinations

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In image processing, segmentation algorithms constitute one of the main focuses of research. In this paper, new image segmentation algorithms based on a hard version of the information bottleneck method are presented. The objective of this method is to extract a compact representation of a variable, considered the input, with minimal loss of mutual information with respect to another variable, considered the output. First, we introduce a split-and-merge algorithm based on the definition of an information channel between a set of regions (input) of the image and the intensity histogram bins (output). From this channel, the maximization of the mutual information gain is used to optimize the image partitioning. Then, the merging process of the regions obtained in the previous phase is carried out by minimizing the loss of mutual information. From the inversion of the above channel, we also present a new histogram clustering algorithm based on the minimization of the mutual information loss, where now the input variable represents the histogram bins and the output is given by the set of regions obtained from the above split-and-merge algorithm. Finally, we introduce two new clustering algorithms which show how the information bottleneck method can be applied to the registration channel obtained when two multimodal images are correctly aligned. Different experiments on 2-D and 3-D images show the behavior of the proposed algorithms

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we present view-dependent information theory quality measures for pixel sampling and scene discretization in flatland. The measures are based on a definition for the mutual information of a line, and have a purely geometrical basis. Several algorithms exploiting them are presented and compare well with an existing one based on depth differences

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we address the problem of extracting representative point samples from polygonal models. The goal of such a sampling algorithm is to find points that are evenly distributed. We propose star-discrepancy as a measure for sampling quality and propose new sampling methods based on global line distributions. We investigate several line generation algorithms including an efficient hardware-based sampling method. Our method contributes to the area of point-based graphics by extracting points that are more evenly distributed than by sampling with current algorithms

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We provide an algorithm that automatically derives many provable theorems in the equational theory of allegories. This was accomplished by noticing properties of an existing decision algorithm that could be extended to provide a derivation in addition to a decision certificate. We also suggest improvements and corrections to previous research in order to motivate further work on a complete derivation mechanism. The results presented here are significant for those interested in relational theories, since we essentially have a subtheory where automatic proof-generation is possible. This is also relevant to program verification since relations are well-suited to describe the behaviour of computer programs. It is likely that extensions of the theory of allegories are also decidable and possibly suitable for further expansions of the algorithm presented here.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spatial data representation and compression has become a focus issue in computer graphics and image processing applications. Quadtrees, as one of hierarchical data structures, basing on the principle of recursive decomposition of space, always offer a compact and efficient representation of an image. For a given image, the choice of quadtree root node plays an important role in its quadtree representation and final data compression. The goal of this thesis is to present a heuristic algorithm for finding a root node of a region quadtree, which is able to reduce the number of leaf nodes when compared with the standard quadtree decomposition. The empirical results indicate that, this proposed algorithm has quadtree representation and data compression improvement when in comparison with the traditional method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Speech is the primary, most prominent and convenient means of communication in audible language. Through speech, people can express their thoughts, feelings or perceptions by the articulation of words. Human speech is a complex signal which is non stationary in nature. It consists of immensely rich information about the words spoken, accent, attitude of the speaker, expression, intention, sex, emotion as well as style. The main objective of Automatic Speech Recognition (ASR) is to identify whatever people speak by means of computer algorithms. This enables people to communicate with a computer in a natural spoken language. Automatic recognition of speech by machines has been one of the most exciting, significant and challenging areas of research in the field of signal processing over the past five to six decades. Despite the developments and intensive research done in this area, the performance of ASR is still lower than that of speech recognition by humans and is yet to achieve a completely reliable performance level. The main objective of this thesis is to develop an efficient speech recognition system for recognising speaker independent isolated words in Malayalam.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A technique for simultaneous localisation and mapping (SLAM) for large scale scenarios is presented. This solution is based on the use of independent submaps of a limited size to map large areas. In addition, a global stochastic map, containing the links between adjacent submaps, is built. The information in both levels is corrected every time a loop is closed: local maps are updated with the information from overlapping maps, and the global stochastic map is optimised by means of constrained minimisation

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs