992 resultados para Chlamydial infection


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chlamydiae are obligate intracellular bacteria with a strong global prevalence. They cause infections of the eye, lung and the genital tract and can either replicate in inclusion compartments or persist inside their host cell. In this thesis we focused on two aspects of chlamydiae infection. We hypothesize that transcription factor AP-1 is crucial for a replicative chlamydiae infection in epithelial cells. In addition we suggest that chlamydiae hide inside apoptotic blebs for a silent uptake by macrophages as immune evasion strategy.rnFocusing on AP-1, we could demonstrate that during Chlamydia pneumoniae infection, protein expression and phosphorylation of the AP-1 family member c-Jun significantly increased in a time and dose dependent manner. A siRNA knockdown of c-Jun in HEp-2 cells reduced chlamydial load, resulting in smaller inclusions and a significant lower chlamydial recovery. Furthermore, inhibition of the c-Jun containing AP-1 complexes, using Tanshinone IIA, changed the replicative infection into a persistent phenotype, characterized by (i) smaller, aberrant inclusions, (ii) a strong decrease in chlamydial load, as well as by (iii) its reversibility after removal of Tanshinone IIA. As chlamydiae are energy parasites, we investigated whether Tanshinone IIA interferes with energy/metabolism related processes. rnA role for autophagy or gene expression of glut-1 and c-jun in persistence could not be determined. However we could demonstrate Tanshinone IIA treatment to be accompanied by a significant decrease of ATP levels, probably causing a chlamydiae persistent phenotype.rnRegarding the chlamydial interaction with human primary cells we characterized infection of different chlamydiae species in either pro-inflammatory (type I) or anti-inflammatory (type II) human monocyte derived macrophages (hMDM). We found both phenotypes to be susceptible to chlamydiae infection. Furthermore, we observed that upon Chlamydia trachomatis and GFP-expressing Chlamydia trachomatis infection more hMDM type II were infected. However the chlamydial load was higher in hMDM type I and correspondingly, more replicative-like inclusions were found in this phenotype. Next, we focused on the chlamydial transfer using a combination of high speed live cell imaging and GFP-expressing Chlamydia trachomatis for optimal visualization. Thereby, we could successfully visualize the formation of apoptotic, chlamydiae-containing blebs and the interaction of hMDM with these blebs. Moreover, we observed the development of a replicative infection in hMDM. rnIn conclusion, we demonstrated a crucial role of AP-1 for C. pneumoniae development and preliminary time lapse data suggest that chlamydiae can be transferred to hMDMs via apoptotic blebs. In all, these data may contribute to a better understanding of chlamydial infection processes in humans.rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Pelvic inflammatory disease (PID) results from the ascending spread of microorganisms, including Chlamydia trachomatis, to the upper genital tract. Screening could improve outcomes by identifying and treating chlamydial infections before they progress to PID (direct effect) or by reducing chlamydia transmission (indirect effect). METHODS We developed a compartmental model that represents a hypothetical heterosexual population and explicitly incorporates progression from chlamydia to clinical PID. Chlamydia screening was introduced, with coverage increasing each year for 10 years. We estimated the separate contributions of the direct and indirect effects of screening on PID cases prevented per 100,000 women. We explored the influence of varying the time point at which clinical PID could occur and of increasing the risk of PID after repeated chlamydial infections. RESULTS The probability of PID at baseline was 3.1% by age 25 years. After 5 years, the intervention scenario had prevented 187 PID cases per 100,000 women and after 10 years 956 PID cases per 100,000 women. At the start of screening, most PID cases were prevented by the direct effect. The indirect effect produced a small net increase in PID cases, which was outweighed by the effect of reduced chlamydia transmission after 2.2 years. The later that progression to PID occurs, the greater the contribution of the direct effect. Increasing the risk of PID with repeated chlamydial infection increases the number of PID cases prevented by screening. CONCLUSIONS This study shows the separate roles of direct and indirect PID prevention and potential harms, which cannot be demonstrated in observational studies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There are approximately 92 million new chlamydial infections of the genital tract in humans diagnosed each year, costing health care systems billions of dollars in treatment not only of acute infections, but also of associated inflammatory sequelae, such as pelvic inflammatory disease (PID) and ectopic pregnancy. These numbers are increasing at a steady rate and, due to the asymptomatic nature of infections, the incidence may be underestimated and the costs of treatment therefore higher. Over the previous few decades there has been a large amount of research into the development of an efficacious vaccine against genital tract chlamydial infections. The majority of this research has focused on females, due to the high rate of development of associated diseases, including PID, which can lead to ectopic pregnancy and infertility. In light of the increasing infection rates that have occurred despite the availability of antibiotics, and the asymptomatic nature of chlamydial infections, it is imperative that an efficacious vaccine that protects against infection and associated pathology be developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. We investigated the likely impact of vaccines on the prevalence of and morbidity due to Chlamydia trachomatis (chlamydia) infections in heterosexual populations. Methods.An individual‐based mathematical model of chlamydia transmission was developed and linked to the infection course in chlamydia‐infected individuals. The model describes the impact of a vaccine through its effect on the chlamydial load required to infect susceptible individuals (the “critical load”), the load in infected individuals, and their subsequent infectiousness. The model was calibrated using behavioral, biological, and clinical data. Results.A fully protective chlamydia vaccine administered before sexual debut can theoretically eliminate chlamydia epidemics within 20 years. Partially effective vaccines can still greatly reduce the incidence of chlamydia infection. Vaccines should aim primarily to increase the critical load in susceptible individuals and secondarily to decrease the peak load and/or the duration of infection in vaccinated individuals who become infected. Vaccinating both sexes has a beneficial impact on chlamydia‐related morbidity, but targeting women is more effective than targeting men. Conclusions.Our findings can be used in laboratory settings to evaluate vaccine candidates in animal models, by regulatory bodies in the promotion of candidates for clinical trials, and by public health authorities in deciding on optimal intervention strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chlamydia pneumoniae causes a range of respiratory infections including bronchitis, pharyngitis and pneumonia. Infection has also been implicated in exacerbation/initiation of asthma and chronic obstructive pulmonary disease (COPD) and may play a role in atherosclerosis and Alzheimer's disease. We have used a mouse model of Chlamydia respiratory infection to determine the effectiveness of intranasal (IN) and transcutaneous immunization (TCI) to prevent Chlamydia lung infection. Female BALB/c mice were immunized with chlamydial major outer membrane protein (MOMP) mixed with cholera toxin and CpG oligodeoxynucleotide adjuvants by either the IN or TCI routes. Serum and bronchoalveolar lavage (BAL) were collected for antibody analysis. Mononuclear cells from lung-draining lymph nodes were stimulated in vitro with MOMP and cytokine mRNA production determined by real time PCR. Animals were challenged with live Chlamydia and weighed daily following challenge. At day 10 (the peak of infection) animals were sacrificed and the numbers of recoverable Chlamydia in lungs determined by real time PCR. MOMP-specific antibody-secreting cells in lung tissues were also determined at day 10 post-infection. Both IN and TCI protected animals against weight loss compared to non-immunized controls with both immunized groups gaining weight by day 10-post challenge while controls had lost 6% of body weight. Both immunization protocols induced MOMP-specific IgG in serum and BAL while only IN immunization induced MOMP-specific IgA in BAL. Both immunization routes resulted in high numbers of MOMP-specific antibody-secreting cells in lung tissues (IN > TCI). Following in vitro re-stimulation of lung-draining lymph node cells with MOMP; IFNγ mRNA increased 20-fold in cells from IN immunized animals (compared to non-immunized controls) while IFNγ levels increased 6- to 7-fold in TCI animals. Ten days post challenge non-immunized animals had >7000 IFU in their lungs, IN immunized animals <50 IFU and TCI immunized animals <1500 IFU. Thus, both intranasal and transcutaneous immunization protected mice against respiratory challenge with Chlamydia. The best protection was obtained following IN immunization and correlated with IFNγ production by mononuclear cells in lung-draining LN and MOMP-specific IgA in BAL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chlamydia trachomatis is the most prevalent bacterial sexually transmitted infection in the developed world and the leading cause of preventable blindness worldwide. As reported by the World Health Organization in 2001, there are approximately 92 million new infections detected annually, costing health systems billions of dollars to treat not only the acute infection, but also to treat infection-associated sequelae. The majority of genital infections are asymptomatic, with 50-70% going undetected. Genital tract infections can be easily treated with antibiotics when detected. Lack of treatment can lead to the development of pelvic inflammatory disease, ectopic pregnancies and tubal factor infertility in women and epididymitis and prostatitis in men. With infection rates on the continual rise and the large number of infections going undetected, there is a need to develop an efficacious vaccine which prevents not only infection, but also the development of infection-associated pathology. Before a vaccine can be developed and administered, the pathogenesis of chlamydial infections needs to be fully understood. This includes the kinetics of ascending infection and the effects of inoculating dose on ascension and development of pathology. The first aim in this study was to examine these factors in a murine model. Female BALB/c mice were infected intravaginally with varying doses of C. muridarum, the mouse variant of human C. trachomatis, and the ascension of infection along the reproductive tract and the time-course of infection-associated pathology development, including inflammatory cell infiltration, pyosalpinx and hydrosalpinx, were determined. It was found that while the inoculating dose did affect the rate and degree of infection, it did not affect any of the pathological parameters examined. This highlighted that the sexual transmission dose may have minimal effect on the development of reproductive sequelae. The results of the first section enabled further studies presented here to use an optimal inoculating dose that would ascend the reproductive tract and cause pathology development, so that vaccine efficacy could be determined. There has been a large amount of research into the development of an efficacious vaccine against genital tract chlamydial infections, with little success. However, there have been no studies examining the effects of the timing of vaccination, including the effects of vaccination during an active genital infection, or after clearance of a previous infection. These are important factors that need to be examined, as it is not yet known whether immunization will enhance not only the individual's immune response, but also pathology development. It is also unknown whether any enhancement of the immune responses will cause the Chlamydia to enter a dormant, persistent state, and possibly further enhance any pathology development. The second section of this study aimed to determine if vaccination during an active genital tract infection, or after clearance of a primary infection, enhanced the murine immune responses and whether any enhanced or reduced pathology occurred. Naïve, actively infected, or previously infected animals were immunized intranasally or transcutaneously with the adjuvants cholera toxin and CpG-ODN in combination with either the major outer membrane protein (MOMP) of C. muridarum, or MOMP and ribonucleotide reductase small chain protein (NrdB) of C. muridarum. It was found that the systemic immune responses in actively or previously infected mice were altered in comparison to animals immunized naïve with the same combinations, however mucosal antibodies were not enhanced. It was also found that there was no difference in pathology development between any of the groups. This suggests that immunization of individuals who may have an asymptomatic infection, or may have been previously exposed to a genital infection, may not benefit from vaccination in terms of enhanced immune responses against re-exposure. The final section of this study aimed to determine if the vaccination regimes mentioned above caused in vivo persistence of C. muridarum in the upper reproductive tracts of mice. As there has been no characterization of C. muridarum persistence in vitro, either ultrastructurally or via transcriptome analysis, this was the first aim of this section. Once it had been shown that C. muridarum could be induced into a persistent state, the gene transcriptional profiles of the selected persistent marker genes were used to determine if persistent infections were indeed present in the upper reproductive tracts of the mice. We found that intranasal immunization during an active infection induced persistent infections in the oviducts, but not the uterine horns, and that intranasal immunization after clearance of infection, caused persistent infections in both the uterine horns and the oviducts of the mice. This is a significant finding, not only because it is the first time that C. muridarum persistence has been characterized in vitro, but also due to the fact that there is minimal characterization of in vivo persistence of any chlamydial species. It is possible that the induction of persistent infections in the reproductive tract might enhance the development of pathology and thereby enhance the risk of infertility, factors that need to be prevented by vaccination, not enhanced. Overall, this study has shown that the inoculating dose does not affect pathology development in the female reproductive tract of infected mice, but does alter the degree and rate of ascending infection. It has also been shown that intranasal immunization during an active genital infection, or after clearance of one, induces persistent infections in the uterine horns and oviducts of mice. This suggests that potential vaccine candidates will need to have these factors closely examined before progressing to clinical trials. This is significant, because if the same situation occurs in humans, a vaccine administered to an asymptomatic, or previously exposed individual may not afford any extra protection and may in fact enhance the risk of development of infection-associated sequelae. This suggests that a vaccine may serve the community better if administered before the commencement of sexual activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chlamydia trachomatis continues to be the most commonly reported sexually transmitted bacterial infection in many countries with more than 100 million new cases estimated annually. These acute infections translate into significant downstream health care costs, particularly for women, where complications can include pelvic inflammatory disease and other disease sequelae such as tubal factor infertility. Despite years of research, the immunological mechanisms responsible for protective immunity versus immunopathology are still not well understood, although it is widely accepted that T cell driven IFN-g and Th17 responses are critical for clearing infection. While antibodies are able to neutralize infections in vitro, alone they are not protective, indicating that any successful vaccine will need to elicit both arms of the immune response. In recent years, there has been an expansion in the number and types of antigens that have been evaluated as vaccines, and combined with the new array of mucosal adjuvants, this aspect of chlamydial vaccinology is showing promise. Most recently, the opportunities to develop successful vaccines have been given a significant boost with the development of a genetic transformation system for Chlamydia, as well as the identification of the key role of the chlamydial plasmid in virulence. While still remaining a major challenge, the development of a successful C.trachomatis vaccine is starting to look more likely.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Viral and bacterial respiratory tract infections in early-life are linked to the development of allergic airway inflammation and asthma. However, the mechanisms involved are not well understood. We have previously shown that neonatal and infant, but not adult, chlamydial lung infections in mice permanently alter inflammatory phenotype and physiology to increase the severity of allergic airway disease by increasing lung interleukin (IL)-13 expression, mucus hyper-secretion and airway hyper-responsiveness. This occurred through different mechanisms with infection at different ages. Neonatal infection suppressed inflammatory responses but enhanced systemic dendritic cell:T-cell IL-13 release and induced permanent alterations in lung structure (i.e., increased the size of alveoli). Infant infection enhanced inflammatory responses but had no effect on lung structure. Here we investigated the role of hematopoietic cells in these processes using bone marrow chimera studies. Methodology/Principal Findings Neonatal (<24-hours-old), infant (3-weeks-old) and adult (6-weeks-old) mice were infected with C. muridarum. Nine weeks after infection bone marrow was collected and transferred into recipient age-matched irradiated naïve mice. Allergic airway disease was induced (8 weeks after adoptive transfer) by sensitization and challenge with ovalbumin. Reconstitution of irradiated naïve mice with bone marrow from mice infected as neonates resulted in the suppression of the hallmark features of allergic airway disease including mucus hyper-secretion and airway hyper-responsiveness, which was associated with decreased IL-13 levels in the lung. In stark contrast, reconstitution with bone marrow from mice infected as infants increased the severity of allergic airway disease by increasing T helper type-2 cell cytokine release (IL-5 and IL-13), mucus hyper-secretion, airway hyper-responsiveness and IL-13 levels in the lung. Reconstitution with bone marrow from infected adult mice had no effects. Conclusions These results suggest that an infant chlamydial lung infection results in long lasting alterations in hematopoietic cells that increases the severity of allergic airway disease in later-life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IL-17 is believed to be important for protection against extracellular pathogens, where clearance is dependent on neutrophil recruitment and local activation of epithelial cell defences. However, the role of IL-17 in protection against intracellular pathogens such as Chlamydia is less clear. We have compared (i) the course of natural genital tract C. muridarum infection, (ii) the development of oviduct pathology and (iii) the development of vaccine-induced immunity against infection in wild type (WT) BALB/c and IL-17 knockout mice (IL-17-/-) to determine if IL-17-mediated immunity is implicated in the development of infection-induced pathology and/or protection. Both the magnitude and duration of genital infection was significantly reduced in IL-17-/- mice compared to BALB/c. Similarly, hydrosalpinx was also greatly reduced in IL-17-/- mice and this correlated with reduced neutrophil and macrophage infiltration of oviduct tissues. Matrix metalloproteinase (MMP) 9 and MMP2 were increased in WT oviducts compared to IL-17-/- animals at day 7 post-infection. In contrast, oviducts from IL-17-/- mice contained higher MMP9 and MMP2 at day 21. Infection also elicited higher levels of Chlamydia-neutralizing antibody in serum of IL-17-/- mice than WT mice. Following intranasal immunization with C. muridarum Major Outer Membrane Protein (MOMP) and cholera toxin plus CpG adjuvants, significantly higher levels of chlamydial MOMP-specific IgG and IgA were found in serum and vaginal washes of IL-17-/- mice. T cell proliferation and IFNγ production by splenocytes was greater in WT animals following in vitro re-stimulation, however vaccination was only effective at reducing infection in WT, not IL-17-/- mice. Intranasal or transcutaneous immunization protected WT but not IL-17-/- mice against hydrosalpinx development. Our data show that in the absence of IL-17, the severity of C. muridarum genital infection and associated oviduct pathology are significantly attenuated, however neither infection or pathology can be reduced further by vaccination protocols that effectively protect WT mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chlamydia trachomatis is a pathogen of the genital tract and ocular epithelium. Infection is established by the binding of the metabolically inert elementary body (EB) to epithelial cells. These are taken up by endocytosis into a membrane-bound vesicle termed an inclusion. The inclusion avoids fusion with host lysosomes, and the EBs differentiate into the metabolically active reticulate body (RB), which replicates by binary fission within the protected environment of the inclusion. During the extracellular EB stage of the C. trachomatis life cycle, antibody present in genital tract or ocular secretions can inhibit infection both in vivo and in tissue culture. The RB, residing within the intracellular inclusion, is not accessible to antibody, and resolution of infection at this stage requires a cell-mediated immune response mediated by gamma interferon-secreting Th1 cells. Thus, an ideal vaccine to protect against C. trachomatis genital tract infection should induce both antibody (immunoglobulin A [IgA] and IgG) responses in mucosal secretions to prevent infection by chlamydial EB and a strong Th1 response to limit ascending infection to the uterus and fallopian tubes. In the present study we show that transcutaneous immunization with major outer membrane protein (MOMP) in combination with both cholera toxin and CpG oligodeoxynucleotides elicits MOMP-specific IgG and IgA in vaginal and uterine lavage fluid, MOMP-specific IgG in serum, and gamma interferon-secreting T cells in reproductive tract-draining caudal and lumbar lymph nodes. This immunization protocol resulted in enhanced clearance of C. muridarum (C. trachomatis, mouse pneumonitis strain) following intravaginal challenge of BALB/c mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most vaccines developed against Chlamydia using animal models provide partial protection against a genital tract infection. However, protection against the oviduct pathology associated with infertility is highly variable and often has no defining immunological correlate. When comparing two adjuvants (CTA1-DD and a combination of Cholera toxin plus CpG- oligodeoxynucleotide–CT/CpG) combined with the chlamydial major outer membrane protein (MOMP) antigen and delivered via the intranasal (IN), sublingual (SL) or transcutaneous (TC) routes, we identified two vaccine groups with contrasting outcomes following infection. SL immunization with MOMP/CTA1-DD induced a 70% reduction in the incidence of oviduct pathology, without significantly altering the course of infection. Conversely, IN immunization with MOMP/CT/CpG prevented an ascending infection, but not the oviduct pathology. This anomaly presented a unique opportunity to study the mechanisms by which vaccines can prevent oviduct pathology, other than by controlling the infection. The IL-17 signaling in the oviducts was found to associate with both the enhancement of immunity to infection and the development of oviduct pathology. This conflicting role of IL-17 may provide some explanation for the discordance in protection between infection and disease and suggests that controlling immunopathology, as opposed to the rapid eradication of the infection, may be essential for an effective human chlamydial vaccine that prevents infertility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chlamydia pneumoniae is responsible for up to 20% of community acquired pneumonia and can exacerbate chronic inflammatory diseases. As the majority of infections are either mild or asymptomatic, a vaccine is recognized to have the greatest potential to reduce infection and disease prevalence. Using the C. muridarum mouse model of infection, we immunized animals via the intranasal (IN), sublingual (SL) or transcutaneous (TC) routes, with recombinant chlamydial major outer membrane protein (MOMP) combined with adjuvants CTA1-DD or a combination of cholera toxin/CpG-oligodeoxynucleotide (CT/CpG). Vaccinated animals were challenged IN with C. muridarum and protection against infection and pathology was assessed. SL and TC immunization with MOMP and CT/CpG was the most protective, significantly reducing chlamydial burden in the lungs and preventing weight loss, which was similar to the protection induced by a previous live infection. Unlike a previous infection however, these vaccinations also provided almost complete protection against fibrotic scarring in the lungs. Protection against infection was associated with antigen-specific production of IFNγ, TNFα and IL-17 by splenocytes, however, protection against both infection and pathology required the induction of a similar pro-inflammatory response in the respiratory tract draining lymph nodes. Interestingly, we also identified two contrasting vaccinations capable of preventing infection or pathology individually. Animals IN immunized with MOMP and either adjuvant were protected from infection, but not the pathology. Conversely, animals TC immunized with MOMP and CTA1-DD were protected from pathology, even though the chlamydial burden in this group was equivalent to the unimmunized controls. This suggests that the development of pathology following an IN infection of vaccinated animals was independent of bacterial load and may have been driven instead by the adaptive immune response generated following immunization. This identifies a disconnection between the control of infection and the development of pathology, which may influence the design of future vaccines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identification of the HtrA inhibitor JO146 previously enabled us to demonstrate an essential function for HtrA during the mid-replicative phase of the Chlamydia trachomatis developmental cycle. Here we extend our investigations to other members of the Chlamydia genus. C. trachomatis isolates with distinct replicative phase growth kinetics showed significant loss of viable infectious progeny after HtrA was inhibited during the replicative phase. Mid-replicative phase addition of JO146 was also significantly detrimental to Chlamydia pecorum, Chlamydia suis and Chlamydia cavie. These data combined indicate that HtrA has a conserved critical role during the replicative phase of the chlamydial developmental cycle.