915 resultados para Cerebrovascular Circulation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Adenosine-induced transient flow arrest has been used to facilitate clip ligation of intracranial aneurysms. However, the starting dose that is most likely to produce an adequate duration of profound hypotension remains unclear. We reviewed our experience to determine the dose-response relationship and apparent perioperative safety profile of adenosine in intracranial aneurysm patients. METHODS: This case series describes 24 aneurysm clip ligation procedures performed under an anesthetic consisting of remifentanil, low-dose volatile anesthetic, and propofol in which adenosine was used. The report focuses on the doses administered; duration of systolic blood pressure <60 mm Hg (SBP(<60 mm Hg)); and any cardiovascular, neurologic, or pulmonary complications observed in the perioperative period. RESULTS: A median dose of 0.34 mg/kg ideal body weight (range: 0.29-0.44 mg/kg) resulted in a SBP(<60 mm Hg) for a median of 57 seconds (range: 26-105 seconds). There was a linear relationship between the log-transformed dose of adenosine and the duration of a SBP(<60 mm Hg) (R(2) = 0.38). Two patients developed transient, hemodynamically stable atrial fibrillation, 2 had postoperative troponin levels >0.03 ng/mL without any evidence of cardiac dysfunction, and 3 had postoperative neurologic changes. CONCLUSIONS: For intracranial aneurysms in which temporary occlusion is impractical or difficult, adenosine is capable of providing brief periods of profound systemic hypotension with low perioperative morbidity. On the basis of these data, a dose of 0.3 to 0.4 mg/kg ideal body weight may be the recommended starting dose to achieve approximately 45 seconds of profound systemic hypotension during a remifentanil/low-dose volatile anesthetic with propofol induced burst suppression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Enhanced vascular permeability attributable to disruption of blood-brain barrier results in the development of cerebral edema after stroke. Using an in vitro model of the brain barrier composed of human brain microvascular endothelial cells and human astrocytes, this study explored whether small GTPase RhoA and its effector protein Rho kinase were involved in permeability changes mediated by oxygen-glucose deprivation (OGD), key pathological phenomena during ischemic stroke.

METHODS: OGD increased RhoA and Rho kinase protein expressions in human brain microvascular endothelial cells and human astrocytes while increasing or unaffecting that of endothelial nitric oxide synthase in respective cells. Reperfusion attenuated the expression and activity of RhoA and Rho kinase in both cell types compared to their counterparts exposed to equal periods of OGD alone while selectively increasing human brain microvascular endothelial cells endothelial nitric oxide synthase protein levels. OGD compromised the barrier integrity as confirmed by decreases in transendothelial electric resistance and concomitant increases in flux of permeability markers sodium fluorescein and Evan's blue albumin across cocultures. Transfection of cells with constitutively active RhoA also increased flux and reduced transendothelial electric resistance, whereas inactivation of RhoA by anti-RhoA Ig electroporation exerted opposite effects. In vitro cerebral barrier dysfunction was accompanied by myosin light chain overphosphorylation and stress fiber formation. Reperfusion and treatments with a Rho kinase inhibitor Y-27632 significantly attenuated barrier breakdown without profoundly altering actin structure.

CONCLUSIONS: Increased RhoA/Rho kinase/myosin light chain pathway activity coupled with changes in actin cytoskeleton account for OGD-induced endothelial barrier breakdown.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hypoxia, a condition of insufficient oxygen availability to support metabolism, occurs when the vascular supply is interrupted, as in stroke. The identification of the hypoxic and viable tissue in stroke as compared with irreversible lesions (necrosis) has relevant implications for the treatment of ischemic stroke. Traditionally, imaging by positron emission tomography (PET), using 15O-based radiotracers, allowed the measurement of perfusion and oxygen extraction in stroke, providing important insights in its pathophysiology. However, these multitracer evaluations are of limited applicability in clinical settings. More recently, specific tracers have been developed, which accumulate with an inverse relationship to oxygen concentration and thus allow visualizing the hypoxic tissue non invasively. These belong to two main groups: nitroimidazoles, and among these the 18F-Fluoroimidazole (18F-FMISO) is the most widely used, and the copper-based tracers, represented mainly by Cu-ATSM. While these tracers have been at first developed and tested in order to image hypoxia in tumors, they have also shown promising results in stroke models and preliminary clinical studies in patients with cardiovascular disorders, allowing the detection of hypoxic tissue and the prediction of the extent of subsequent ischemia and clinical outcome. These tracers have therefore the potential to select an appropriate subgroup of patients who could benefit from a hypoxia-directed treatment and provide prognosis relevant imaging. The molecular imaging of hypoxia made important progress over the last decade and has a potential for integration into the diagnostic and therapeutic workup of patients with ischemic stroke.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this experimental study is to evaluate the feasibility and the outcome of total endovascular stent implantation in the aortic arch. Indications for this operation-technique would be acute or chronic dissection of the aortic arch (non-A-non-B dissection) or type B dissection with retrograde extension. Four pigs were canulated via the distal abdominal aorta and a retrograde placement of a Djumbodis arch stent (4-9 cm) was controlled by using intravascular ultrasound and intracardiac ultrasound by the inferior cava vein and under radioscopic control. Cerebral perfusion, by using a flow meter placed on one prepared carotid artery, were controlled before, immediate post-procedural (<1 min), and in the early follow-up after aortic arch stent implantation. During the implantation process, especially during balloon inflation and deflation, mean carotid perfusion decreases slightly. A reactive increase of carotid perfusion after stent placements indicates transitory cerebral hypo-perfusion. Non-covered aortic arch stent implantation is technically feasible and could be a potential treatment option in otherwise inoperable arch dissections. The time required for balloon inflation and deflation causes an important risk of cerebral ischemia. The latter can be reduced by transaxillary perfusion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Subclavian steal phenomenon due to proximal subclavian artery stenosis or occlusion is not un-common but often remains asymptomatic. We describe the case of a 66-year-old man with end-stage renal disease hemodialysed through a brachio-brachial loop graft of the left forearm. Echo-Doppler precerebral examination showed a high reversed flow of 570 ml/min in the ipsilateral vertebral artery. After successful endovascular recanalization of the subclavian artery, access blood flow increased and vertebral flow decreased to 30 ml/min. Complete neurological examination was normal both before and after endovascular treatment. This case demonstrates how high a subclavian steal can be without causing symptoms and how well precerbral and cerebral circulation can adapt to hemodynamic changes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Early trauma care is dependent on subjective assessments and sporadic vital sign assessments. We hypothesized that near-infrared spectroscopy-measured cerebral oxygenation (regional oxygen saturation [rSO 2]) would provide a tool to detect cardiovascular compromise during active hemorrhage. We compared rSO 2 with invasively measured mixed venous oxygen saturation (SvO2), mean arterial pressure (MAP), cardiac output, heart rate, and calculated pulse pressure. Methods: Six propofol-anesthetized instrumented swine were subjected to a fixed-rate hemorrhage until cardiovascular collapse. rSO 2 was monitored with noninvasively measured cerebral oximetry; SvO2 was measured with a fiber optic pulmonary arterial catheter. As an assessment of the time responsiveness of each variable, we recorded minutes from start of the hemorrhage for each variable achieving a 5%, 10%, 15%, and 20% change compared with baseline. Results: Mean time to cardiovascular collapse was 35 minutes ± 11 minutes (54 ± 17% total blood volume). Cerebral rSO 2 began a steady decline at an average MAP of 78 mm Hg ± 17 mm Hg, well above the expected autoregulatory threshold of cerebral blood flow. The 5%, 10%, and 15% decreases in rSO 2 during hemorrhage occurred at a similar times to SvO2, but rSO 2 lagged 6 minutes behind the equivalent percentage decreases in MAP. There was a higher correlation between rSO 2 versus MAP (R =0.72) than SvO2 versus MAP (R =0.55). Conclusions: Near-infrared spectroscopy- measured rSO 2 provided reproducible decreases during hemorrhage that were similar in time course to invasively measured cardiac output and SvO2 but delayed 5 to 9 minutes compared with MAP and pulse pressure. rSO 2 may provide an earlier warning of worsening hemorrhagic shock for prompt interventions in patients with trauma when continuous arterial BP measurements are unavailable. © 2012 Lippincott Williams & Wilkins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: This study aimed to evaluate the characteristics of the brain and vascular indicesof the middle cerebral artery of canine foetuses. Methods: Twenty-five bitches were selected. Tissue development, echogenicity, echotexture and brain echobiometric data were studied, and the major structures were identified between the 5th and 8th gestational weeks. The area and volume of the brain mass (BMA and BMV), cranial area and volume (AC and VC), brain mass index (BMI) and brain volume index (BVI) were determined. A single ultrasound examination was performed during each studied week (6th, 7th and 8th). Doppler ultrasonography was performed to assess the maximum and minimum velocity, resistance and pulsatility index of middle cerebral artery of the foetuses. Results: Echoencephalography was performed to evaluate the morphological characteristics of the central nervous system. Cerebral echobiometry indicated an increase in area and volume of the hemispheres and cranium (P<0·001) but no changes in BMI or BVI over the gestational period studied. Doppler ultrasonography identified increases in peak systolic velocity (P=0·0188) and end diastolic velocity (P=0·0274) and decreases in resistance index (P=0·0002) and pulsatility index (P<0·001). Clinical Significance: Echoencephalography and spectral Doppler ultrasonography of the middle cerebral artery in canine foetuses might be a useful technique for prenatal care. © 2013 British Small Animal Veterinary Association.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Measurement of perfusion in longitudinal studies allows for the assessment of tissue integrity and the detection of subtle pathologies. In this work, the feasibility of measuring brain perfusion in rats with high spatial resolution using arterial spin labeling is reported. A flow-sensitive alternating recovery sequence, coupled with a balanced gradient fast imaging with steady-state precession readout section was used to minimize ghosting and geometric distortions, while achieving high signal-to-noise ratio. The quantitative imaging of perfusion using a single subtraction method was implemented to address the effects of variable transit delays between the labeling of spins and their arrival at the imaging slice. Studies in six rats at 7 T showed good perfusion contrast with minimal geometric distortion. The measured blood flow values of 152.5+/-6.3 ml/100 g per minute in gray matter and 72.3+/-14.0 ml/100 g per minute in white matter are in good agreement with previously reported values based on autoradiography, considered to be the gold standard.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Cardiac arrest causes ischaemic brain injury. Arterial carbon dioxide tension (PaCO2) is a major determinant of cerebral blood flow. Thus, mild hypercapnia in the 24 h following cardiac arrest may increase cerebral blood flow and attenuate such injury. We describe the Carbon Control and Cardiac Arrest (CCC) trial. METHODS/DESIGN: The CCC trial is a pilot multicentre feasibility, safety and biological efficacy randomized controlled trial recruiting adult cardiac arrest patients admitted to the intensive care unit after return of spontaneous circulation. At admission, using concealed allocation, participants are randomized to 24 h of either normocapnia (PaCO2 35 to 45 mmHg) or mild hypercapnia (PaCO2 50 to 55 mmHg). Key feasibility outcomes are recruitment rate and protocol compliance rate. The primary biological efficacy and biological safety measures are the between-groups difference in serum neuron-specific enolase and S100b protein levels at 24 h, 48 h and 72 h. Secondary outcome measure include adverse events, in-hospital mortality, and neurological assessment at 6 months. DISCUSSION: The trial commenced in December 2012 and, when completed, will provide clinical evidence as to whether targeting mild hypercapnia for 24 h following intensive care unit admission for cardiac arrest patients is feasible and safe and whether it results in decreased concentrations of neurological injury biomarkers compared with normocapnia. Trial results will also be used to determine whether a phase IIb study powered for survival at 90 days is feasible and justified. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12612000690853 .

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One in five strokes affects the posterior circulation. Diagnosing posterior circulation stroke can be challenging, as the vascular anatomy can be variable, and because presenting symptoms are often non-specific and fluctuating. Nevertheless, making the correct diagnosis is important, as these strokes have a high chance of recurrence, can be life threatening, and can lead to equally life-threatening complications. Investigation and management largely follow those for stroke in general, although some specific differences exist. These include the preferred use of MRI for diagnosing posterior fossa lesions, the management of basilar artery thrombosis, which may have a longer time window for recanalisation therapy, and the use of endovascular therapies for secondary prevention, which, so far, have not shown any benefit in the treatment of vertebral or basilar artery stenosis. In this review, we summarise the anatomy, aetiology and presentation of posterior circulation stroke, and discuss current approaches to management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introducción. El ataque cerebrovascular (ACV) ocupa el primer lugar en frecuencia entre todas las enfermedades neurológicas de la vida adulta, y el tercer lugar como causa más frecuente de muerte. Se aprobó para el manejo agudo, la terapia con activador del plasminógeno tisular recombinante (t-PA) en las primeras 4,5 horas después del inicio de los síntomas, demostrando mayor sobrevida y menos niveles de discapacidad. Sin embargo solo el 5-10% de pacientes reciben este manejo. Por estas razones es necesario conocer que factores se asocian con la no intervención terapéutica. Objetivo. Describir los factores asociados con la no trombolisis en pacientes con ataque cerebrovascular en un hospital de IV nivel en Bogotá, Colombia. Métodos. Estudio analítico de corte transversal, en un centro de cuarto nivel en Bogotá entre enero de 2009 y enero de 2011. Resultados. Se encontraron 178 pacientes en un promedio de edad de 65,9 años (DE± 10 años) con una relación hombre-mujer 1:1, la principal causa de no trombolisis fue la ventana mayor a 4.5 horas, 33,7% (n=60), 26,4% por cambios en imágenes diagnosticas, y 14% por puntajes leves o severos en las escala National Institute of Health Stroke Scale (NIHSS), historia quirúrgica 7.3% y laboratorios 4.5%. El tiempo promedio de atención fue 23 minutos (DE ± 21 min) para la activación del código de ACV, 39 minutos para valoración por neurología (DE ± 25 min), 46 minutos (DE ± 19,1 min) para toma de paraclínicos, 66 minutos para toma de imágenes y 97 minutos para trombolisis (DE ± 21min, DE ± 17 min, respectivamente). Se realizó trombolisis en 17 pacientes, 9,6%. No se encontró asociación significativa entre cultura de organización con trombolisis ni de tiempos de atención con trombolisis. Conclusiones. La principal razón de no trombolisis, fue la ventana mayor a 4.5 horas, no se encontró relación entre cultura de organización institucional con trombolisis. El tiempo promedio de trombolisis fue de 90 minutos. Deben instaurarse medidas para reducir el tiempo de llegada al hospital, y los tiempos de atención en urgencias. Deben realizarse nuevas evaluaciones del código ACV posterior a las estrategias de mejoría.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE Coronary artery bypass grafting (CABG) using extracorporeal circulation (ECC) is still the gold standard. However, alternative techniques have been developed to avoid ECC and its potential adverse effects. These encompass minimal extracorporeal circulation (MECC) or off-pump coronary artery bypass grafting (OPCAB). However, the prevailing potential benefits when comparing MECC and OPCABG are not yet clearly established. METHODS In this retrospective study we investigated the potential benefits of MECC and OPCABG in 697 patients undergoing CABG. Of these, 555 patients had been operated with MECC and 142 off-pump. The primary endpoint was Troponin T level as an indicator for myocardial damage. RESULTS Study groups were not significantly different in general. However, patients undergoing OPCABG were significantly older (65.01 years ± 9.5 vs. 69.39 years ± 9.5; p value <0.001) with a higher Logistic EuroSCORE I (4.92% ± 6.5 vs. 5.88% ± 6.8; p value = 0.017). Operating off pump significantly reduced the need for intra-operative blood products (0.7% vs. 8.6%; p-value <0.001) and the length of stay in the intensive care unit (ICU) (2.04 days ± 2.63 vs. 2.76 days ± 2.79; p value <0.001). Regarding other blood values a significant difference could not be found in the adjusted calculations. The combined secondary endpoint, major cardiac or cerebrovascular events (MACCE), was equal in both groups as well. CONCLUSIONS Coronary artery bypass grafting using MECC or OPCABG are two comparable techniques with advantages for OPCABG regarding the reduced need for intra-operative blood products and shorter length of stay in the ICU. However serological values and combined endpoint MACCE did not differ significantly in both groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mock circulation loops are used to evaluate the performance of cardiac assist devices prior to animal and clinical testing. A compressible, translucent silicone ventricle chamber that mimics the exact size, shape and motion of a failing heart is desired to assist in flow visualization studies around inflow cannulae during VAD support. The aim of this study was therefore to design and construct a naturally shaped flexible left ventricle and evaluate its performance in a mock circulation loop. The ventricle shape was constructed by the use of CT images taken from a patient experiencing cardiomyopathic heart failure and used to create a 3D image and subsequent mould to produce a silicone ventricle. Different cardiac conditions were successfully simulated to validate the ventricle performance, including rest, left heart failure and VAD support.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heart disease is attributed as the highest cause of death in the world. Although this could be alleviated by heart transplantation, there is a chronic shortage of donor hearts and so mechanical solutions are being considered. Currently, many Ventricular Assist Devices (VADs) are being developed worldwide in an effort to increase life expectancy and quality of life for end stage heart failure patients. Current pre-clinical testing methods for VADs involve laboratory testing using Mock Circulation Loops (MCLs), and in vivo testing in animal models. The research and development of highly accurate MCLs is vital to the continuous improvement of VAD performance. The first objective of this study was to develop and validate a mathematical model of a MCL. This model could then be used in the design and construction of a variable compliance chamber to improve the performance of an existing MCL as well as form the basis for a new miniaturised MCL. An extensive review of literature was carried out on MCLs and mathematical modelling of their function. A mathematical model of a MCL was then created in the MATLAB/SIMULINK environment. This model included variable features such as resistance, fluid inertia and volumes (resulting from the pipe lengths and diameters); compliance of Windkessel chambers, atria and ventricles; density of both fluid and compressed air applied to the system; gravitational effects on vertical columns of fluid; and accurately modelled actuators controlling the ventricle contraction. This model was then validated using the physical properties and pressure and flow traces produced from a previously developed MCL. A variable compliance chamber was designed to reproduce parameters determined by the mathematical model. The function of the variability was achieved by controlling the transmural pressure across a diaphragm to alter the compliance of the system. An initial prototype was tested in a previously developed MCL, and a variable level of arterial compliance was successfully produced; however, the complete range of compliance values required for accurate physiological representation was not able to be produced with this initial design. The mathematical model was then used to design a smaller physical mock circulation loop, with the tubing sizes adjusted to produce accurate pressure and flow traces whilst having an appropriate frequency response characteristic. The development of the mathematical model greatly assisted the general design of an in vitro cardiovascular device test rig, while the variable compliance chamber allowed simple and real-time manipulation of MCL compliance to allow accurate transition between a variety of physiological conditions. The newly developed MCL produced an accurate design of a mechanical representation of the human circulatory system for in vitro cardiovascular device testing and education purposes. The continued improvement of VAD test rigs is essential if VAD design is to improve, and hence improve quality of life and life expectancy for heart failure patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vitro cardiovascular device performance evaluation in a mock circulation loop (MCL) is a necessary step prior to in vivo testing.A MCL that accurately represents the physiology of the cardiovascular system accelerates the assessment of the device’s ability to treat pathological conditions. To serve this purpose, a compact MCL measuring 600 ¥ 600 ¥ 600 mm (L ¥ W¥ H) was constructed in conjunction with a computer mathematical simulation.This approach allowed the effective selection of physical loop characteristics, such as pneumatic drive parameters, to create pressure and flow, and pipe dimensions to replicate the resistance, compliance, and fluid inertia of the native cardiovascular system. The resulting five-element MCL reproduced the physiological hemodynamics of a healthy and failing heart by altering ventricle contractility, vascular resistance/compliance, heart rate, and vascular volume. The effects of interpatient anatomical variability, such as septal defects and valvular disease, were also assessed. Cardiovascular hemodynamic pressures (arterial, venous, atrial, ventricular), flows (systemic, bronchial, pulmonary), and volumes (ventricular, stroke) were analyzed in real time. The objective of this study is to describe the developmental stages of the compact MCL and demonstrate its value as a research tool for the accelerated development of cardiovascular devices.